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ABSTRACT

The methods of non-destructive testing (NDT) and structural health monitoring (SHM)

play a pivotal role in predicting the remaining functional life of structures through pre-

cise diagnostic and prognostic techniques. Their primary objective is to identify and

characterize potential defects that could jeopardize the structural integrity and perfor-

mance. However, it is noteworthy that advancements in SHM and NDT, particularly

those reliant on guided wave-based methodologies, have experienced a slowdown in

recent years. This deceleration can be attributed to the limitations associated with

traditional signal processing techniques when applied to intricate and the formidable

challenge of extracting damage-related features from propagating wave signals.

Conversely, there has been a remarkable acceleration in the domain of artificial intelli-

gence (AI) methods, particularly in deep learning and computer vision, in recent times.

This progress has unveiled new avenues for problem-solving and presents opportunities

for seamless integration with NDT and, subsequently, SHM methodologies.

The primary aim of this dissertation is to create an innovative AI-driven diagnostic sys-

tem tailored for the identification of delamination in composite laminates, specifically

for carbon fiber-reinforced polymers (CFRP). This endeavor involves exploring the

potential of leveraging artificial neural networks (ANNs)-based methods to enhance

damage identification through the analysis of Lamb wave propagation. The ANNs-

based systems developed in this context employ an end-to-end approach, enabling the

direct transformation of propagating Lamb wave animations into comprehensive dam-

age maps.

Moreover, the dissertation addresses the challenge of slow data acquisition inherent

in high-resolution full wavefield imaging techniques. To surmount this hurdle, I intro-

duced a deep learning solution designed to reconstruct high-resolution frames depicting

Lamb wave propagation, as well as their interactions with delaminations and structural

boundaries from low-resolution measurements. This innovative approach promises to

expedite the data acquisition process significantly.

Furthermore, another approach of deep learning-based surrogate modeling for solving

the inverse problems of delamination identification is also proposed in this study. This

surrogate model is able to predict the full wavefield of Lamb waves interacting with



delamination in much shorter time than by using traditional finite element method.
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Chapter 1

Introduction

The presented work in this dissertation is the outcome of 4 years research work on two

projects, both of which were funded by Polish National Science Center:

� Feasibility studies of artificial intelligence-driven diagnostics, grant agreement no.

2018/31/B/ST8/00454 (3 years).

� Fusion of models and data for enriched evaluation of structural health, grant

agreement no. 2019/01/Y/ST8/00060 (1 year).

1.1 Problem Statement

Composite materials find extensive applications across various industries, primarily

owing to their exceptional qualities, including high tensile strength, low density, and

resistance to fatigue and corrosion. In composite structures, a perplexing form of dam-

age that emerges is known as inter-laminar delamination. This type of delamination

typically initiates from micro-cracks within the matrix material and follows a non-

linear progression, especially when subjected to cyclic loading conditions [1–3]. The

presence of delamination can lead to a reduction in the compression strength of com-

posite laminates over time, ultimately rendering the composite structure susceptible to

failure, particularly through buckling mechanisms. As a result, the overall performance

of composite structures can be severely compromised. Thus, the early detection and

identification of delamination when it is still in its incipient stages can play a crucial

role in preventing catastrophic structural failures.

Different methodologies for non-destructive evaluation (NDE) and structural health

monitoring (SHM) have been employed in the context of damage detection within

composite structures. These approaches can broadly be categorized into two main

groups: model-based methods and data-driven techniques.

1



Chapter 1. Introduction

Model-based approaches aim to replicate the process of damage development in com-

posite materials by employing physics-based numerical models and incorporating rele-

vant variables to tailor the model to specific application scenarios. Nevertheless, these

model-based methods come with practical limitations that constrain their applicability

to relatively simple structures in controlled environments.

Conversely, data-driven approaches for NDT/SHM rely on signal processing of data

recorded by sensors in response to the structure’s exposure to various external condi-

tions. Among these data-driven strategies, those leveraging artificial neural networks

have gained prominence thanks to advancements in hardware as well as computer vision

methods. Consequently, deep learning-based approaches have opened up new avenues

for problem-solving and integration with NDE/SHM methods. This application of

deep learning (DL) techniques addresses challenges related to data preprocessing and

feature extraction. Contemporary approaches adopt an end-to-end paradigm, where

unprocessed data is directly inputted into the model to generate a damage map as

output, allowing the model to autonomously recognize patterns and detect damage.

1.2 Purpose of the Study

In recent years, artificial neural networks (ANNs) have found applications across vari-

ous scientific disciplines. In alignment with this trend, I intend to leverage ANNs-based

methods within the domain of non-destructive testing and structural health monitoring

(NDT/SHM) to craft an ANNs-based diagnostic system tailored for identifying delam-

ination in composite laminates. This adoption of ANNs promises to enrich several

facets of NDT/SHM, spanning elastic wave behavior, image processing, and animation

analysis.

Hence, I propose an end-to-end DL approach that autonomously conducts feature ex-

traction of delamination characteristics. This implies that the supervised DL model will

independently learn to extract damage-related features and subsequently identify and

localize damage in the composite laminates. The chosen approach for this endeavor is

supervised learning. To facilitate this, a substantial dataset representing the full wave-

field of propagating elastic waves was generated numerically. It is worth noting that

the creation of such a dataset is a time-intensive process, taking approximately three

months. Consequently, I anticipate that implementing this system will serve as an ad-

ditional safety measure for operational structures, consequently reducing maintenance

costs.

2



Chapter 1. Introduction

1.3 Objectives and Motivation

The primary aim of this research is to establish an ANN-based diagnostic system geared

towards identifying delamination within composite laminates. Additionally, it seeks to

investigate the possibilities of utilizing ANN-based methodologies to delve into damage

detection and identification, leveraging the propagation of Lamb waves.

The data related to elastic wave propagation encompasses complex patterns of wave

reflections. Explicitly programming instructions to yield a damage map for a structural

element based on anomalies in propagating elastic waves, such as reflections from struc-

tural discontinuities, proves challenging. Consequently, this study endeavors to explore

potential solutions through the adoption of deep neural networks (DNNs), given their

promising capabilities. Recent advances in machine learning, coupled with increased

computational power, provide an opportune moment for delving into potential appli-

cations of DNNs.

DNNs represent an emerging tool that has demonstrated successful applications in fields

like computer vision and speech recognition, surpassing human-level accuracy in image

classification [4–6]. A key advantage of DNNs, compared to other machine learning

approaches, is their scalability. Performance improves in tandem with both the size of

the neural network and the dataset employed for supervised learning. This scalability

paves the way for an end-to-end approach in which DNN processes the animation of

propagating waves (input) directly into a damage map (output).

Main thesis:

Therefore, it is possible to develop DL methods that surpass conventional

full wavefield processing methods for delamination identification in compos-

ite laminates.

Another objective of this research centers on addressing the challenge of slow data

acquisition in obtaining high-resolution full wavefields of Lamb wave propagation. As

a solution, the aim is to develop a DL system proficient in restoring high-resolution

frames of Lamb wave propagation, along with their interactions concerning delamina-

tion and structural boundaries, using low-resolution measurements while maintaining

high accuracy.

Sub-thesis 1:

Therefore, it is possible to develop a DL-based super-resolution method

that significantly reduces the data acquisition time by the SLDV.

The final objective of this research work is the development of DL-based surrogate
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model for solving the inverse problems of delamination identification. The surrogate

model developed in this research work takes the full wavefield of Lamb waves without

delamination (delamination information is provided in binary form) as inputs and is

able to produce full wavefield with delamination.

Sub-thesis 2:

Therefore, it is possible to develop a DL-based surrogate method that can

be efficiently utilized in the inverse problems of delamination identification.

This research seeks to provide insights into the utility of ANN-based techniques by

analyzing the full wavefield of propagating elastic waves for delamination identification

in composite laminates:

� Can the proposed ANN-based diagnostic model outperform conventional signal

processing techniques?

� Given that experimental signals exhibit noise, is it sufficient to employ a numerical

model for dataset generation?

� To what extent can DL models generalize to previously unseen data, including

experimental data acquired via SLDV?

� Is it computationally practical to utilize all frames of propagating waves, or can

the utilization of specific frames prove efficient?

� Does the DL technique employed for delamination identification in this thesis

harbor long-term potential for practical applications?

� Can the DL technique designed for super-resolution image reconstruction be re-

purposed to recover high-resolution full wavefield frames from low-resolution mea-

surements with sufficient accuracy for damage detection?

� Is it possible to eliminate the dataset computation by just developing a DL-based

surrogate model?

� Will the inverse problem in damage detection be solved with a DL-based surrogate

model?

1.4 Thesis Contribution

This research work is composed of three different tasks:
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i. Delamination identification: This work introduces a novel approach by em-

ploying a full wavefield dataset of elastic wave propagation, generated numerically,

as input into the developed model to generate a comprehensive damage map. For

this purpose, ConvLSTM model was specially designed.

ii. Reconstruction of full wavefields of Lamb waves: A DL model has been

developed to facilitate an end-to-end super-resolution technique concerning elastic

wave propagation and its interaction with damage and structural boundaries.

The process begins with acquiring a low-resolution input frame utilizing a uniform

mesh grid with a minimal number of scanning points. These low-resolution frames

are then fed into a DL model, which transforms them into high-resolution frames.

Subsequently, the predicted high-resolution frames can be input into the many-

to-one model to identify and characterize damage.

iii. Simulation of full wavefield for delamination identification: This research

embraces an innovative approach centered on DL to explore the dynamics of

guided wave propagation within composite structures containing different delam-

ination scenarios. At its core, this approach harnesses the power of a sophisticated

deep ConvLSTM autoencoder-based surrogate model, specially designed for gen-

erating comprehensive full wavefield data that mimics the behavior of propagating

guided waves within these composite structures. Moreover, this cutting-edge DL

model, employed for predicting full wavefield patterns, marks its pioneering ap-

plication within the domain of the inverse problem associated with delamination

identification.

1.5 Thesis Organization

Chapter 2 serves as an introduction to Structural Health Monitoring (SHM) and its

applications, focusing on SHM using Guided Waves (GWs) for composite materials.

Additionally, this chapter provides an overview of damage detection and localization

techniques employing GWs. Some literature review of GW-based damage detection in

composite structures (without the use of AI methods) is also provided.

In chapter 3, the focus shifts to Artificial Neural Networks (ANNs) approaches applied

within the domain of GW-based NDT/SHM. The chapter delves into the comparison of

artificial intelligence, machine learning, and deep learning, working procedure of ANNs,

and best practices for training a neural network are elaborated. Different variants of

ANNs algorithms are explained. Furthermore, it offers an overview of ANNs-based

approaches using GW-based NDT/SHM in composite structures.
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Chapter 4 is dedicated to the acquisition of a synthetic dataset that resembles the full

wavefield of Lamb waves propagating in a Carbon Fiber Reinforced Polymer (CFRP)

plate. The dataset encompasses interactions between these waves, structural bound-

aries, and discontinuities, such as damage. This chapter also introduces data prepro-

cessing, and dataset splitting process performed in the upcoming chapters.

Chapter 5 describes the first task of this research work (delamination identification) by

using DL-based approach. The ConvLSTM model is explained. The assessment of the

proposed approach is elaborated, which includes numerical test cases to demonstrate

their efficacy in predicting previously unseen data. Furthermore, the proposed DL

model undergoes evaluation using experimentally acquired data, featuring single and

multiple Teflon inserts simulating delamination scenarios, to assess the generalization

capabilities of the developed DL model.

Chapter 6 describes the second task of this research work (reconstruction of full wave-

fields of Lamb waves) by using a DL-based approach. The need for the super resolution

based approach for the reconstruction of full wave fields from low-resolution into high-

resolution is elaborated. The assessment of the proposed super-resolution approach is

elaborated, which includes numerical test cases to demonstrate its efficacy in predict-

ing previously unseen data. Furthermore, the results of the proposed super-resolution-

based approach are compared with the conventional compressive sensing technique.

Chapter 7 describes the third task of this research work (simulation of full wavefield for

delamination identification) by using a DL-based approach. The construction of full

wavefield data by using a DL-based surrogate model is explained. The assessment of the

proposed approach is elaborated, which includes numerical test cases to demonstrate

their efficacy in predicting previously unseen data. Furthermore, the results of the

proposed DL-based surrogate model are compared with the results of the delamination

identification task (of Chapter 5).

Chapter 8 provides a summary of the findings and insights derived from this disser-

tation. It also outlines potential future research directions stemming from the work

presented here.
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Chapter 2

Guided Wave-based SHM/NDT

2.1 Introduction

Numerous civil engineering and aerospace structures are approaching or exceeding their

design lives. Therefore, assessing the condition of these structures is essential to de-

termine their serviceability, safety, and load-carrying capacity [1–3]. It is crucial to

monitor the health of structural elements in mechanical, civil, and aerospace industries

where the presence of small defects may result in a very catastrophic failure [3]. A

defect or damage can be defined as any degradation in the structural properties that

alters the dynamic behaviour of the structure [7, 8]. These changes can occur at either

micro-scale level such as matrix anomalies, or in the macro-scale level such as cracks.

Damage negatively influences the current or future performance of a structure. Re-

cently, damage detection methods have been widely studied for the purpose of locating

and quantifying structural defects. There are many ways and indicators for detecting

damage in a structure, such as variations in strain, stiffness reduction, and natural

frequencies, etc. [9].

Damage detection is usually part of one or more related approaches, including Struc-

tural Health Monitoring (SHM), Nondestructive Evaluation (NDE), also known as

Nondestructive Testing (NDT), Condition Monitoring (CM), Health and Usage Mon-

itoring System (HUMS), Statistical Process Control (SPC) and Damage Prognosis

(DP) [1, 8]. SHM can be defined as the process of implementing a damage detection

and health assessment system for civil, mechanical, or aerospace infrastructure [1, 8].

The SHM process includes continuous monitoring of a mechanical structure or system

using dynamic response measurements. Damage-sensitive features acquired from these

measurements are employed to determine the current status of the system’s health [1,

8]. The output of these measurements can be periodically updated for long-term SHM,

which is particularly useful in the case of extreme events. SHM provides reliable infor-
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mation and rapid condition assessment about the performance of the system in near

real-time [8].

NDT/E is commonly carried out offline in a local manner by the operator [3, 10].

NDT/E is primarily used for severity checks and damage characterisation when the

damage location is already known [1, 8]. NDT/E systems are often limited to single-

point measurements [3]. Most NDT/E techniques require component disassembly, es-

pecially for those components that are inaccessible which results in interruption of

the daily operation of the structural systems leading to downtime which consequently

results in an increase in operational costs. NDT/E systems are typically costly, labor-

intensive, and time-consuming, relying heavily on the expertise and skills of the oper-

ator [11].

CM is analogous to SHM but typically concerns damage identification in rotating ma-

chinery, such as those used in power generation and manufacturing [12].

HUMS has been adopted for damage detection in rotorcraft drive trains [13]. In this

context, the health monitoring section helps distinguish damage, while the usage mon-

itoring reports the estimate of load cycles that the system encounters for the purposes

of assessing fatigue life consumption.

SPC is a process-based technique, and its final aim is to process diagnostics. It employs

various sensors for monitoring changes in a process [3, 14].

DP is employed for predicting the remaining useful life of a system once the damage

has been detected [1, 7, 8]. DP systems use the knowledge about the location and size

of damage, as well as expected operational loads, to predict the remaining life of a

structure [3].

2.2 Structural Health Monitoring

SHM aims to detect, identify, and characterise damage and degradation in engineer-

ing structures [15]. SHM serves as a critical technical foundation for the development

of condition-based maintenance strategies. These strategies hinge on real-time assess-

ments of a structure’s health and performance, ultimately enhancing safety while con-

currently lowering operational and maintenance expenses. SHM is a more reliable and

modified variant of NDT/E [11]. SHM can reduce costs and maintain a decent level

of safety regarding performance conditions, particularly for complex structures [16].

SHM is extensively adopted by the aerospace community, especially for aging aircraft

situations [17]. Sensors are used in the SHM system to monitor physical quantities such

as acceleration, strain, tensile and compressive stress, and so on [18]. SHM techniques
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should exhibit the following characteristics:

i. Low possibility of missing the damage.

ii. Suitability for continuous online monitoring.

iii. Handling of large datasets applicable for large engineering structures [19].

iv. Rapid calculation.

The SHM system tasks can be categorised as a process composed of four operations

that make four primary elements or levels, as shown in Fig. 2.1. These levels are:

(i) damage detection, (ii) damage localization, (iii) damage assessment, and (iv) life

prognosis [3, 20].

Figure 2.1: Four major levels of SHM.

According to these levels, damage detection level provides a qualitative explanation

that damage may exist, the localization level gives an indication about the feasible

region of the damage, the assessment level indicates the estimation of the severity of

damage by providing information regarding the size and type of damage, and finally,

the evaluation of remaining structural life is provided at the prognosis stage. The

prognosis level also predicts possible failures or breakdowns. The initial three levels (i.e.

detection, localization, and assessment) are usually related to damage identification,

signal processing, and modelling features. The last level (i.e. life prognosis) falls

into statistical analysis, reliability, fracture mechanics, fatigue analysis, and design

assessment fields. Many researchers have comprehensively investigated the prognosis

level but currently, there are no commercially available solutions [3, 20].
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2.3 Basic Elements of an SHM System

A typical SHM system is composed of three basic elements:

i. A network of actuators and sensors, most likely smart materials, which are per-

manently connected to the structure. This perspective of SHM makes it different

from conventional NDT/E techniques and it is mandatory for executing auto-

mated inspections. This step involves observation of the structure from arrays

of sensors using regular sampled response measurements, storing the measured

data, and transmitting data to the control center.

ii. On-board information administration and computing equipment. A large number

of sensors are continuously producing a huge volume of data for processing in

real-time. Computational power and data transmission are employed within a

structure for the purpose of detecting, localizing, assessing, and predicting defects

that can produce structural impairment immediately or later in the future.

iii. Algorithms that examine collected data from the structure with the recently

obtained data. Algorithms also determine a damage index and then notify about

the existence, position, type, and size of the damage [3, 19, 21, 22].

For monitoring of possible changes in the structures, all SHM systems need a proper

sensor network. The sensitivity of the SHM techniques is usually linked to better in-

teraction between the sensors and the structure. Therefore, it is essential to choose

suitable sensors to be installed. During the implementation of a network of sensors

in an SHM system, the information for obtaining defect identification, the material of

the structure to examine, and the variables to measure are considered. The next stage

is data acquisition. At this stage, the signals produced by each sensor are obtained.

The characteristics of SHM systems such as mobility, scalability, and costs are con-

sidered. The data collected by the SHM can be influenced by sensor configuration,

environmental and operational noise, or any other event. Many of these obstacles need

to be resolved before executing any analysis on the produced information for gener-

alising the methods applied for recognition, identification, or classification. This level

is associated with preprocessing or signal conditioning. It can be accomplished with

the use of hardware accessories, software algorithms, or both. Finally, data analysis

tools are used to determine the presence of defects in the instrumented structure and

to characterise the possible source of damage [20, 22].
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2.4 Classification of SHM Methods

Damage detection techniques for SHM can be categorised into two major classes based

on the type of information to be used: Local and Global methods [3, 19].

Local techniques monitor a tiny part of the structure surrounded by sensors using

measurements of structural response [3, 19]. Comparative Vacuum Monitoring (CVM),

ultrasonic waves, eddy currents, acoustic emission, and Electromechanical Impedance

(EMI) are normally considered as local SHM techniques [21, 23, 24].

Global techniques are executed when global motion is induced in the structure during

its operation. Vibration-based methods and thermography systems are the examples

of this class. Global methods are helpful when local damage has an influence on the

behaviour of the global structure in terms of space and time [3, 19]. As opposed to

local methods, global methods have many benefits:

i. The whole structure can be measured with these methods by using a sparse sensor

network.

ii. It is not necessary to locate sensors near the damage.

iii. Only a little information about the critical region is enough.

Global SHM techniques also have some limitations:

i. The wavelength of vibrations is nearly equivalent to the dimension of the com-

ponent or structure, therefore, these methods have relatively low sensitivity to

small defects.

ii. Usually these methods are quite expensive [3].

Although the damage size and location are roughly estimated with global methods, it

can be successfully utilised for damage detection. The relationship between defects in

structures and structural vibration is used in health assessment [3, 25].

Recently, three types of SHM techniques have been successively developed: (1) SHM

based on vibrations [26]; (2) Electromechanical Impedance (EMI) based SHM [23,

24]; and (3) Guided wave-based SHM [27–34]. Vibration-based SHM techniques de-

tect damage by measuring vibration signals on structures. These techniques identify

local defects by detecting changes in modal shapes, natural frequencies, or dynamic

responses [26]. EMI-based techniques identify changes in structures by measuring the

EMI of a PZT transducer, which is connected to (or embedded into) the monitored
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structure [23, 24]. Guided Waves (GWs) are elastic waves that propagate along a

path determined by the structure boundaries. GWs and the applications of GWs in

SHM/NDT are explained in the next section.

2.5 Guided Wave-based SHM/NDT

2.5.1 Guided Waves

GWs are of particular interest for NDT and SHM of engineering structures such as

rails, aircraft components, and oil and gas pipelines [35–38]. Developing a GW-based

technique needs attentive understanding obtained over-analysis and modelling of mode-

damage interaction and wave propagation because of the dispersion and multimodal

character of these waves [39]. These techniques have several benefits:

i. A short wavelength provides plentiful interaction of the GWs and relatively small

defects.

ii. These waves have very high excitation frequency, therefore, low-frequency ambi-

ent influence can be filtered out.

iii. These waves can propagate for long distance inside the structure under investi-

gation.

iv. GWs provide high sensitivity to various types of defects and the extent of the

monitored area [40].

In these techniques, an actuator is used for generating the waves. Signals are received

by the transducers at one or multiple locations which are then analyzed for the identifi-

cation of defects [40]. Using GW-based SHM/NDT technique, damage can be detected

and monitored with a very small number of transducers [41–43]. In many GW-based

SHM/NDT techniques, collections of actuators/sensors are adjusted on a plate which

not only identifies the existence of defects but also localize the defects [8].

In the GW-based SHM/NDT techniques, usually, a dense network of Lead Zirconate

Titanate (PZTs) is utilised for sensing and excitation of signals. It provides the ability

of online monitoring and the permanent integration of modifications in GWs propa-

gation. However, the problem of applying an array composed of a few PZTs for the

localization of defects is that the resolution of the imaging of defects may be very low.

Whereas, applying a highly dense arrangement of PZTs is also not feasible in most

situations. This problem can be solved by adopting Scanning Laser Doppler Vibrom-

etry (SLDV). SLDV is capable of measuring GWs under a very dense grid of points
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over the surface of a large specimen. This combination of signals is known as a full

wavefield [44, 45].

2.5.2 Lamb Waves

Various types of GWs have been studied for application in SHM/NDT. Lamb waves,

named after the British applied mathematician Horace Lamb [46], are one of the most

popular types of GWs utilised for damage detection [41]. Lamb waves are a form

of ultrasonic GWs that propagate in plate-like structures [3, 41, 46]. Lamb wave

interrogation of structures is an appealing SHM/NDT technique for damage detection

and monitoring [34, 43, 47, 48]. Lamb waves can travel long distances with minimum

dispersion [49, 50]. The high-frequency and low attenuation nature of these waves allow

it to be used for the detection of small defects [51]. By using Lamb waves, damage

in structures can be evaluated by analyzing anomalies in the propagation of Lamb

waves, considering backward and forward scattering [47, 48]. These waves provide

more enhanced information about the presence, size, type, location, and severity of

damage than frequency response techniques [52]. Both internal and external defects in

large monitoring structures can be inspected with Lamb waves. Due to these reasons,

Lamb waves have been established as highly suitable for damage detection in plate-like

structures [53]. Both contact and non-contact type of transducers, such as air-coupled

ultrasonic transducers, can be employed for the generation of Lamb waves. Piezoelectric

transducers made of PZT ceramics are mostly used for the generation and detection of

Lamb waves [54–57]. Sophisticated signal-processing techniques are used for processing

of the dynamic response signals received by PZT transducers [58].

These waves are guided by the free surfaces of plates. The wavelength of Lamb waves

is similar or larger than the thickness of the plate. These waves couple shear and

longitudinal waves within a plate [8]. To use Lamb waves for SHM/NDT techniques,

it is beneficial to possess a waveform which is efficiently recognisable before and af-

ter the propagation through the plate. The frequency dependency of wave speed in

Lamb waves makes these waves dispersive. A narrow-band frequency helps reduce the

unwanted dispersive nature of Lamb waves [52]. By choosing a proper driving fre-

quency, the response of the input signal is recorded at receiving sensors with minimal

interference [8].

The propagation of Lamb waves can be categorised into either Symmetric (S0) or

Antisymmetric (A0) modes with respect to the neutral plane of the plate. A graphical

representation of Symmetric (S0) and Antisymmetric (A0) modes of Lamb waves in

thin plate-like structures is shown in Fig. 2.2. At lower ultrasonic frequencies only
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these two fundamental modes (the S0 mode and the A0 mode) of Lamb waves exist.

In the range of low frequency-thickness product values, the S0 mode’s motion involves

stretching and compressing the plate, with a predominant in-plane displacement, as

depicted in Fig. 2.2a, and it tends to propagate over long distance. In contrast, the

A0 mode predominantly induces an out-of-plane motion, causing the plate to bend,

as illustrated in Fig. 2.2b. The A0 mode of Lamb waves is quite valuable for damage

identification. The wavelength and wave velocity of the A0 mode is relatively smaller

than the S0 mode. The smaller wavelength of the A0 mode is very helpful for interacting

with the damage, as the half wavelength of a chosen wave mode must be smaller or

similar to the size of the damage. A0 modes can efficiently be generated by the surface

mounted transducers [59].

(a) Symmetric (S0) mode (b) Antisymmetric (A0) mode

Figure 2.2: Representation of Symmetric (S0) and Antisymmetric (A0) modes of Lamb waves.

The main problem of Lamb waves is that it is an active technique. It requires a regular

supply of voltage and function-generating signals [52]. The resulting data of Lamb

waves is more complicated than many other techniques. Therefore, the interpretation

of these signals is also very difficult [52]. Despite extensive research efforts, Lamb

wave-based real engineering applications are still limited. This is mainly due to the

complexity of the propagation of these waves, i.e. dispersion, possible reflections from

boundaries, multimodal nature, and other structural features that generate a wave field

which is laborious to analyze [3].

2.6 Sensors and Transducers used in GW-based
SHM/NDT

In the last few years, the structural engineering community has increasingly imple-

mented sensor networks for the SHM/NDT purposes of monitoring structures. For an

SHM/NDT system, it is essential to acquire a proper assessment of a system’s dynamic

response. There are several different types of sensors and data retrieval methods that

can be implemented in the SHM/NDT. The sensors used in an SHM/NDT system are

application-specific [8].

GW-based SHM/NDT sensing and data acquisition system consists of some or all of
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the below-mentioned elements:

i. Transducers are responsible for converting changes in the domain variable of

interest, i.e., temperature, strain, or acceleration, to changes in an electrical

signal, i.e., voltage, resistance, or impedance.

ii. Actuators are responsible for applying a prescribed input to the system, i.e., a

piezoelectric transducer attached to the surface of a structure.

iii. Analogue-to-Digital (A/D) converters are responsible for converting ana-

logue electrical signals into digital signals, which can be processed later on digital

hardware. When a SHM system is using actuators, a Digital-to-Analogue (D/A)

converter is also required for converting a designated digital excitation signal to

an analogue voltage, which is useful for controlling the actuator [8, 20].

Damage detection for a SHM/NDT system requires the employment of an arrangement

of sensors with the primary function of capturing data which can be employed for

determining the state of the monitored structure. Many SHM/NDT techniques employ

elastic wave signals which are produced by an actuator. The inspection methods depend

on the type of transducer used for inspection and the type of propagating signals

over the structure. The transducers employed in the SHM/NDT system should be

light and small in size for the purpose of integration into the structure without any

considerable impact on its behaviour [3]. Due to the improved implementation of

SHM/NDT methods, many new sensors have been developed. These new sensors are

very helpful in improving the ability to detect, characterize, and localize defects in an

SHM/NDT system [60]. These advancements in sensors strive to reduce the weight and

power consumption of the system. In addition, it also helps in resolving installation

problems, and improve data analysis and operation facilities [20]. Sensors can be

categorised based on the physical variable which they sense or on the principle of

transduction on which they are based. The subsequent sections illustrate some of the

various types of sensors used in GW-based SHM/NDT systems. These sensors can be

adapted for the inspection of both composite and metallic structures [8, 20, 41].

2.6.1 Piezoelectric Sensors

Piezoelectric materials are made of polymers and ceramic. These transducers are

mostly used for the sensing and generation of GWs [54–57]. Therefore, these devices

are very suitable for GW-based SHM/NDT [3]. These materials can also act as ac-

tuator and electricity harvester [61]. Piezoelectric transducers are lightweight, small

in size, consume a low amount of power, and are able to generate a broad frequency
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response [3, 62]. Some other advantages of piezoelectric sensors are: these sensors

can be assembled in various forms, such as circular and rectangular [3, 20]. These

transducers can easily be arranged as arrays of sensors in order to record multi-point

measurements on or under the surface of the monitored structure [63]. Lead Zirconate

Titanate (Pb[ZrxTi1−x]O3, (0 ≤ x ≤ 1), PZT), barium titanate (BaTiO3), and ferro-

electric polymers, such as polyvinylidene difluoride (PVDF), are the most commonly

used materials in these sensors [64].

PZT transducers can be used for rapid and in situ SHM. With piezoelectric transducers,

it is easy to measure wave propagation and acquire information about various damage

types, such as corrosion or delamination [20, 41]. However, the methods utilising these

transducers sometimes require a high amount of data points and the baseline signal for

the purpose of comparison with the damaged signal for accurate damage estimation [8,

65].

Pressure-based piezoelectric sensors can measure the changes in strain, pressure, tem-

perature, acceleration, and force by applying an electrical charge. These piezoresistive

pressure sensors are also called strain sensors or strain gauges [60, 66]. These kinds

of sensors have widely been applied in medical, nuclear, and aerospace instrumenta-

tion [66]. Piezoresistors (essentially piezoelectric ceramic) are frequently used in EMI

techniques [11, 20]. Strain gauges are sensitive but provide only localized measurement.

Changes in vibrations, frequency, displacement, and mode shapes can be measured with

accelerometers [67]. Typical accelerometers are quite bulky in size and do not provide

good sensitivity. Whereas, piezoelectric accelerometer, Surface Micromachined Piezo-

electric Accelerometers (PiXLs), and piezoresistive Microelectromechanical Systems

(MEMS) accelerometers are light in size, less expensive, provide better sensitivity, and

better resolution [60, 68–70].

2.6.2 Fiber Optics

Fiber Optic Sensors (FOS) are employed in situations where high precision and im-

munity to electromagnetic interference are required [71]. In FOS, an optical fiber is

operated throughout the structure, and then optical reflectometry is conducted for

the detection/localization of defects using distributed strain through scattering pro-

cesses [72]. FOS generally consist of:

i. Core, a thin glass fiber.

ii. Cladding, which confines the dispersion of light within the fiber core.

iii. Protective coating, which absorbs moisture and also provides mechanical strength [73].
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FOS have proved very efficient for SHM/NDT and are good competitors with other

sensors. These sensors provide better resistance to electromagnetic interferences and

noise [60]. FOS offer significant advantages in the realm of structural state monitoring.

They can effectively monitor various state parameters, including temperature, strain,

and aerodynamic pressure. The advantages of FOS over traditional sensors are that

they are lightweight, corrosion-resistant, and durable. FOS are passive in nature be-

cause of the dielectric construction and are capable of withstanding harsh environments

and high temperatures. Also, these sensors can be integrated with the structure reli-

ably for long-term monitoring and can also be monitored from a remote location [74,

75]. Expensive instruments such as interferometers are employed in FOS [72]. FOS

usually contain multimode fibers and auto-compensate for temperature changes.

There are three technologies of FOS: point sensors such as Fiber Bragg Grating (FBG)

sensors [76], long gauge sensor or quasi-distributed sensors such as multiplexed FBG

sensors [77], and fully-distributed sensors such as Brillouin Optical Time Domain Re-

flectometry (BOTDR) and Brillouin Optical Time Domain Analysis (BOTDA) [78].

Out of these sensors, FBG sensors are commonly used for the practical monitoring of

structures [75]. FBG is applicable for the strain measurement under static and dy-

namic environments [11]. Advanced FBG-based accelerometers have been introduced

to overcome the drawbacks of conventional or wireless accelerometers [75].

FBG sensors can be used for the registration of Lamb waves. The grating pitch of

the sensor is changed due to the propagating Lamb waves, which then generates the

Bragg wavelength shift. Lamb waves could be reconstructed by monitoring the Bragg

wavelength shifts. The structural information, such as the presence, location, size, and

growth of damage, can be acquired by analyzing the received Lamb waves [79]. Various

researchers have employed FBG sensors for damage detection and localization using

Lamb waves in aircraft structures [80–83]. Moreover, recent progress in laboratory-

oriented investigations has shown that FBG sensors are significantly mature for civil

applications [79, 84]. However, FBG sensor technology still needs further development

for efficient use in the aerospace market [79].

2.6.3 Microelectromechanical Systems (MEMS)

Miniaturization techniques are used in the construction of this type of sensor, combining

several kinds of transducers [85]. These sensors are very beneficial in terms of main-

tenance and implementation costs [86]. These sensors are capable of integrating with

the onboard computing, which makes these sensor self-diagnosing and self-calibrating.

MEMS sensors have some additional attractive characteristics, such as their small size
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and easy connectivity with a wireless sensor network [20]. It is also desirable to find

MEMS sensors that utilise inductive, optical effects, capacitive, or piezoelectric [87, 88].

In addition, actuators can also be included [89]. Generally, MEMS sensors are com-

posed of a mixture of multiple varieties of sensors [90]. These sensors are adopted for

measuring the magnitude of distinct variables i.e. angular velocity (gyroscopes), strain,

displacement, and acceleration [8, 20]. This type of sensor provides high sensitivity,

integration with communication systems, the determination of multiple variables, and

responses at lower frequencies. In the last few years, MEMS sensors are increasingly

being used for GW-based SHM and NDT due to the mentioned factors [91–93]. Cur-

rently in-use MEMS have some issues such as traceable calibration, mounting schemes,

and long-term survival capabilities.

2.6.4 Scanning Laser Doppler Vibrometer (SLDV)

The Laser Doppler Vibrometer (LDV) works on the principles of the Doppler shift

and is highly applicable for measuring out-of-plane surface velocities [41]. In-plane

velocities can also be measured by the configuration of three laser beams [94]. LDV

measures these velocities with high precision, including non-contact mode during GW

propagation [41, 95]. LDV sensing systems have been widely employed for the sensing

of GWs, and more specifically for Lamb waves [41, 95].

Generally, an LDV-based sensing system contains a laser head that drives a laser beam

and then records the reflected beam from the vibrating surface. A demodulator is

used for transform the information of the reflected beam into velocity measurements,

and then a controller is used to deflect the optical mirrors for the purpose of precise

adjustment of the laser beam. A simpler LDV sensing system contains a single head

that can offer only a single-point measurement [41]. The Scanning LDV (SLDV) is

capable of recording and measuring vibrations at various points on a predetermined

grid. SLDV provides high resolution and sensitivity, making it more suitable for high-

frequency analysis, rapid, and precise imaging of the wave response of a structure

in a non-contact way [41]. SLDV enables measurement of full wavefield of a structure

rather than single-point measurements typically obtained through conventional sensors.

SLDV is useful for measuring the velocity of the inspected area at points associated

with a predefined grid. SLDV-based measurements can be combined with adequate

signal processing and imaging algorithms for the purpose of damage identification.

High-resolution SLDV measurements provide very detailed visualization of different

types of multiple defects [96].

A layout of mirrors is equipped with SLDV, which is helpful for changing the angle of
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measurement beams. The SLDV is also equipped with a camera which helps define a

measurement grid precisely on the selected area of the object of interest. Furthermore,

a screen of monitor is used for the visualization of the grid [97]. 3D vibrometers are used

to provide information about the monitored object in three dimensions, which is very

helpful in many cases. However, acquiring 3D measurements is more challenging than

obtaining 1D measurements because 3D measurements require additional alignment of

the three laser beams [97].

Recently, notable progress has been made in measurement techniques such as shearo-

graphic interferometry and SLDV. These techniques allow the analysis of the full wave-

field of elastic waves. The advancement in these techniques has initiated new opportu-

nities for various types of damage detection problems in structures [41].

SLDV has some limitations too, which are:

i. The inspected object surface has to be characterised by proper reflectivity; oth-

erwise, the acquired signal-to-noise ratio is low.

ii. For a specified time, the measurements can only be performed at one point in

space.

iii. Measurements need to be repeated many times for full field Lamb wave registra-

tion at a dense grid of points [97].

iv. High-resolution SLDV measurements take much time and require a large amount

of hard drive space.

v. SLDV is very expensive.

2.7 GW-based SHM/NDT in Composite Structures

Composites are polymer matrices reinforced with man-made or natural fibers or any

other engineering reinforcing material [11, 98]. In recent years, various industries,

more specifically aerospace, are progressively employing composite structures to achieve

the desired performance in a wide range of applications [11]. The use of composite

structures is growing rapidly due to its simple structure, design flexibility, high specific

strength, stiffness, lightweight, convenient integral molding, and many other desired

mechanical properties [11, 45]. Incorporating composite materials has proven to be a

highly efficient approach for reducing the weight of substantial structures, enhancing

overall efficiency, and diminishing operational expenditures.
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Maintenance is required for the composite materials because of less frequent but of-

ten abrupt and complex material failures in them. The state of a structure in which

the structure fails to provide adequate output is termed as the failure of the com-

posites [98]. This failure in composite structures depends on many quantitative and

qualitative factors such as the structural stiffness of the composite, the strength of

the structures, resistance to corrosion, resistance to impact, fatigue due to loading

and unloading cycles, resistance to lightning and thunderstorms, and yield capacity

of the composite [98]. Different forms of damage can occur in composite materials,

such as corrosion, matrix cracking, debonding, delamination, and fiber breakage [3,

98–100]. Composite structures are very sensitive to impact loads. Even low-intensity

and the low-velocity impact can commence matrix cracks in composites. Matrix cracks

in composites then lead to delamination, which is one of the most common susceptible

defects in composite structures. Delamination can grow and badly affect the structural

integrity and mechanical properties of the composites, leading to very catastrophic fail-

ures if not detected at an early stage [43]. Therefore, the detection, localization, and

quantification of delamination in composite structures are very crucial for the reliable

and safe implementation of these structures in real-world applications.

In recent decades, many researchers have developed numerous intelligent and computational-

based NDT/E and SHM techniques for composite structures [101]. Eddy currents

(electromagnetic testing), acoustic emissions, optical methods, ultrasonic inspection,

vibration analysis, thermography, radiography, and GWs are extensively used damage

detection techniques in composite structures [98, 101]. GWs are broadly recognised

as one of the most promising tools for significant identification of defects in composite

structures [3, 52, 59]. GWs-based SHM and NDT techniques have been broadly applied

for detecting numerous types of defects in composite structures, including debond-

ing [31], delamination [29, 30], and impact damage [32–34].

GW-based detection, identification, and localization of damage for composite struc-

tures have extensively been studied in the literature. Yang et al. [102] evaluated the

size, location, and shape of damage with Lamb waves by using PZT wafer transducers

in composite materials. Hameed et al. [48] developed an efficient damage detection

technique by introducing quantitative size estimation and transverse damage localiza-

tion for composite materials with the use of Lamb waves. Li et al. [103] developed

a technique based on the second harmonic Lamb waves propagation for assessing the

thermal fatigue defects in composite materials. Zak et al. [104] used scanning laser

vibrometry for the experimental measurements of defects detection in metal and thin-

walled composite materials using Lamb waves. They applied the spectral finite element

method for numerical investigations.
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Fakih et al. [100] proposed a Lamb wave-based technique for the detection, localiza-

tion, and assessment of the severity of barely visible indentation damage in composite

structures. Toyama and Takatsubo [105] used an Acoustic Emission (AE) transducer

and Angle Beam Transducer (ABT) for the detection as well as evaluation of the size

of impact-induced delamination in composite laminates using S0 mode of Lamb waves.

Rauter et al. [106] developed an impact damage detection method for composite struc-

tures based on nonlinear Lamb waves. Park et al. [30] developed a complete non-contact

ultrasonic wavefield imaging technique for automatic detection and visualization of hid-

den delamination and debonding in composite structures. Xu et al. [107] proposed a

weighted sparse reconstruction-based anomaly imaging method for damage detection

in composite plates based on Lamb waves by utilizing 3D laser vibrometry.

2.8 Conclusions

In this chapter, SHM and NDT techniques, major methods of damage detection, and

the main levels of SHM along with the functionalities of every level are elaborated.

Firstly, the damage is detected, then the location of the damage is identified. After

that, the size and type of damage are estimated, and in the end, the remaining life of

the structure is evaluated. Major components of an SHM technique and various types

of SHM techniques are described. The use of GWs, and Lamb waves in SHM and

NDT are also explained. Lamb waves are usually preferred over vibrations and EMI

for implementing SHM and NDT techniques due to their longer propagation distances

and suitability for distinguishing smaller defects. Various kinds of sensors applied

for implementing GW-based SHM and NDT techniques are explained. PZT-based

transducers are commonly used for the generation of Lamb waves in GW-based SHM

and NDT. However, SLDV is mostly employed for the analysis of the full wavefield

in GWs-based NDT techniques. Furthermore, various types of GW-based damage

detection, localization, and assessment techniques implemented in composite materials

are described.

There is a knowledge gap in accurate estimation of damage size because of the mul-

timodal complex character of Lamb waves. Therefore, DL methods can serve as an

alternative to conventional signal processing methods.
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Chapter 3

Artificial Neural Networks for GW-based
SHM/NDT

3.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are simply referred to as neural networks. ANNs

are computational models inspired by the nervous system of animals and human be-

ings, attempting to mimic their behaviour [108, 109]. The mammalian nervous system

is composed of cells referred to as neurons. These neurons in the mammalian ner-

vous system are interconnected using dendrites and axons, and the regions connecting

these dendrites and axons are known as synapses. The strengths of the connections in

these synapses often change in response to external stimuli. This change in synaptic

connections represents how learning is performed in living organisms [110].

This biological mechanism is simulated in ANNs, which are composed of computational

units are known as artificial neurons. The neurons in ANNs are interconnected through

weights, which perform the same role as the strength of synaptic connection in biological

organisms [110]. These artificial neurons in ANNs are a set of computational processing

units responsible for acquiring and maintaining knowledge (information-based) and

generating desired outputs [109–111]. These neurons communicate with each other

by sending information in the form of activation signals along directed connections.

Multiple artificial neurons in ANNs are connected and form a network. A simple

structure of a biological and an artificial neuron is illustrated in Fig. 3.1.

Generally, ANNs have two main components: nodes and layers. Nodes are responsible

for specific operations, and layers are composed of groups of nodes operating together

at a specific depth within a neural network.

A typical neural network is composed of an input layer, an output layer connected by

one or more hidden layers. Each successive layer accepts the output from the previous
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(a) A biological neuron (b) An artificial neuron

Figure 3.1: Graphical illustration of a biological and artificial neuron.

layer as input. These three layers are described below:

i. Input layer: The input layer is responsible for receiving data (information),

features, signals, or measurements from the external environment.

ii. Hidden layer(s): Hidden layers are also known as intermediate or invisible

layers. These layers are sandwiched between the input and the output layers,

therefore, they are invisible from the outside. Hidden layers extract features

associated with the process or system being analysed. The ANNs can include

any desired number of hidden layers, each comprising the necessary number of

neurons or units. The initial hidden layers handle simpler patterns, while the later

layers detect more complex ones. Most of the internal processing in a network

occurs in these layers.

iii. Output layer: This is the last layer of a neural network and is responsible

for producing and presenting the final output of the network, acquired from

processing in the hidden layers. The number of output nodes is usually equal to

the number of classes in the target class [109].

Figure 3.2: A simple three-layered neural network.
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A simple three-layered neural network, composed of an input layer, a hidden layer, and

an output layer, is shown in Fig. 3.2. When there is more than one hidden layer in a

neural network, the neural network is then referred to as a deep neural network (deep

learning).

Based on the information propagation, a neural network can be grouped into two

generic categories [109, 112, 113]:

� Feed-forward networks: In these types of networks, information flows only in

one direction. The connection between the nodes has no cycles or loops in the

graph when these networks are considered as a graph with neurons as its nodes.

These network architectures can also be referred to as Directed Acyclic Graphs

(DAG). Examples of these types of networks are Multilayer Perceptrons (MLPs)

and Convolutional Neural Networks (CNNs).

� Feed-back networks: These networks have connections that form directed

loops or cycles. These architectures can operate and generate sequences of arbi-

trary sizes, possess memorization ability, and can store information and sequence

relationships in their internal memory. Examples of these types of networks are

Recurrent Neural Networks (RNNs) and Long-Short Term Memory (LSTM) net-

works.

3.2 A Brief History of ANNs

McCulloch and Pitts [114] proposed ANNs for the first time in 1943 as electric circuits,

and a learning algorithm was proposed by Donald Hebb in 1949 [115]. In 1952, Hodgkin

and Huxley [116] incorporated neural phenomena such as action potential propagation

and neuronal firing into a set of evolution equations capable of yielding quantitatively

accurate spikes and thresholds.

Between 1957 and 1958, Rosenblatt and Wightman [117] developed the first neuro-

computer named Mark I perceptron, establishing the basic model of the perceptron.

Their model was demonstrated by recognizing different simple characters. Widrwo and

Hoff [118] developed the Adaline (adaptive linear element) model in 1960, capable of

recognizing simple patterns. They trained Adaline using the least mean squares (LMS)

method.

In 1969, Minsky and Papert [119] mathematically proved that the Perceptron cannot

handle complex logical function, which significantly reduced the interest of many re-

searchers in neural networks. During that period, the Adaline model and its multilayer
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version known as Madaline was successfully applied in many tasks but struggled with

solving linearly inseparable problems due to the use of linear activation functions.

In 1980, Fukushima proposed a multilayered neural network known as NeoCogni-

tron [120]. The architecture of NeoCognitron was inspired by the seminal studies

of the mammalian visual system by Hubel and Wiesel [121]. NeoCognitron consists of

a sequence of two-dimensional layers of neurons, with each neuron connected to nearby

neurons from the previous layers. In NeoCognitron, the weights for the neurons are

not computed in a fully automatic way.

In the late 1980s, LeCun et al. [122–124] developed the first Convolutional Neural

Networks (CNNs) take inspiration from the work of Fukushima. CNN included the

concept of feature maps produced by the layers of the neurons with local and heavily

restricted connections, which is similar to the receptive fields of biological neurons, and

whose weights are adapted to the use of backpropagation algorithm [125].

In 1988, George Cybenko made important contributions by proving the universal func-

tional approximation ability of neural networks. In 1989, Hornik, Funahashi, and

Stinchcombe presented their work, demonstrating the multilayer perceptron network

as a universal approximator.

Subsequently, ANNs have widely been used in various engineering and science- related

areas. Recently, ANNs have been extended from a simple pattern recognition problems

to more complex tasks, including DNA and gene recognition, object detection, face

detection, classification, and many more. The applications of ANNs have been extended

from engineering and physical sciences to economics, finance, and social sciences [126].

3.3 Artificial Intelligence, Machine Learning and Deep
Learning

Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) are often

used interchangeably but these are not exactly the same terminologies. The diagram

in Fig. 3.3 represents the relationship between AI, ML, and DL.

There are many similarities and differences among these techniques, which are elabo-

rated below.

3.3.1 Artificial Intelligence

Artificial means man-made, which is not natural and intelligence is the ability of ac-

quiring and applying knowledge and skills. As the name indicates that AI is the field
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Figure 3.3: Relationship between AI, ML and DL

of science that makes the machine able to mimic or replicate the behaviour of human

beings. AI is concerned with building smart machines, which are capable of perform-

ing tasks that usually need human intelligence [127, 128]. AI techniques are frequently

being applied for the tasks of developing systems endowed with intellectual character-

istics of humans, such as the ability to reason, generalize, problem-solving, discover

meaning, learning from past experiences, and many more.

3.3.2 Machine Learning

ML is a subset of AI, which makes the computer able to learn from data, without

being explicitly programmed for a task. ML is concerned with constructing computer

programs that are automatically improving with experience [129, 130]. The real power

of ML comes from making future predictions based on the received data in the form of

observations of real-world events. ML algorithms are capable of learning patterns from

the input data and these learned patterns are then used for making informed predictions

in the future. Every ML technique can be an AI technique but every AI technique may

not be an ML technique, non-ML techniques such as rule-based systems and alpha-

beta pruning are also widely used in AI. Some examples of ML algorithms are linear

regression [129, 130], logistic regression [129, 130], decision trees [130, 131], random

forest [130, 132, 133], support vector machines [130, 134], and boosting algorithms [135,

136].

Traditional ML algorithms are useful in many situations, however, they are largely

dependent on the quality of features for getting superior performance. The creation of

features is also a time-consuming task and needs a lot of domain expertise. Further-
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more, with the increasing complexity of the problems, more specifically with the advent

of unstructured data such as voice, text, images, and so on, it can be almost impossible

to create features for such tasks that represent the complex functions. Therefore, there

is often a need to find a different approach for solving such complex problems; that is

where end-to-end ML approaches come into play.

3.3.3 Deep Learning

Deep Learning is a sub-field of ML, DL is just an extension of traditional ANNs. DL

is an end-to-end ML architecture that could be applied directly to the data. The

main difference between DL networks and ANNs is the depth and complexity of the

network. Traditional ANNs have only one hidden layer, while DL networks have more

than that [137–139]. In DL, neural networks may consist of thousands of interconnected

neurons (nodes), mostly arranged in multiple layers, where one node is connected to

many nodes in the previous layer from where it accepts its input data, as well as

being connected to neural nodes in the following layer, to which it sends the output

data once it has been processed [4, 137]. One defining characteristic of DL models

is the ability to learn features automatically from the input data. Unlike traditional

ML, where there is a need to create features manually, DL excels in learning different

hierarchies of features across multiple layers. DL can solve more complex problems

by modeling complex patterns than traditional ANNs. Therefore, DL is more widely

used nowadays in computer vision and natural language processing applications such

as object detection, image recognition, face detection, chatbots, and text generation [4,

137, 140].

DL techniques have made great progress in the past decade. There are many fac-

tors that led to this significant rise of DL techniques such as the availability of large

quantities of data, improved accuracy, scaling effectively with the data, and more pow-

erful hardware. However, while comparing to the traditional ML techniques, DL needs

more training data, more computational power, and more time to train. Moreover, DL

methods are also difficult to interpret.

DL is a field of undergoing intense research activities. Researchers are devoted to

inventing new neural network architectures that either increase the performance of the

previously implemented architectures or tackle new problems. Some of the popular DL

techniques are Convolutional Neural Networks (CNNs), Recurrent Neural Networks

(RNNs), and Generative Adversarial Networks (GANs).
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3.4 Bayesian Neural Networks

Bayesian neural networks (BNNs) represent a fascinating and innovative approach to

DL and neural network modeling. What sets them apart from traditional neural net-

works is their ability to capture uncertainty and provide probabilistic outputs. Unlike

conventional neural networks that provide point estimates, BNNs incorporate Bayesian

principles to model weight parameters as probability distributions. This enables them

to express not only what they have learned but also their level of uncertainty about

their predictions. This aspect makes BNNs particularly valuable in scenarios where

uncertainty assessment is crucial, such as in medical diagnoses, autonomous driving,

or financial predictions. By propagating uncertainty throughout the network, BNNs

offer more robust and reliable predictions, making them a powerful tool in machine

learning and artificial intelligence. While they may require more computational re-

sources for training and inference, their capacity to handle uncertainty and provide

richer insights into data makes them an area of growing interest and research within

the AI community [141].

3.5 Types of Learning

ML or neural networks algorithms are composed of four major types of learning, which

are explained one by one in the subsequent sections.

3.5.1 Supervised Learning

Supervised learning refers to the type of learning where an algorithm is trained to learn

patterns based on prior knowledge. This is one of the simplest form of learning. The

data in this type of learning consist of targets or labels, where the algorithm seeks

patterns that explain the relationship between the features and the target. Trained

models can then predict labels for new data [129, 130, 137, 138]. In supervised learning,

the algorithms iterate during the learning process to minimize the difference between

the predicted value and the target value [137].

Supervised learning is further composed of two types: classification and regression [129,

130]. Classification accepts data (observations) and labels them with a certain category

or class. For example, fraud detection, where the category is either fraud or legitimate,

classifying email as spam or non-spam, and classifying voters as Democrat, Republican,

and Independent. On the other hand, regression takes data observations and outputs

a real number value. Examples of regression tasks include predicting the sale price of

a house based on different factors such as region and national unemployment rate and
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predicting the number of points a basketball team will score in a match.

Some of the popular supervised learning techniques are K-nearest neighbors, decision

trees, random forest, support vector machines (SVM), linear regression, logistic regres-

sions, and ANNs (ANNs can also be used in unsupervised learning).

3.5.2 Unsupervised Learning

In contrast to supervised learning, unsupervised learning consists of training a model

with unlabeled data, which means that there are no target values available. In this

type of learning, the algorithm automatically learns patterns from the input data by

itself [129, 130, 138]. The purpose of this type of learning is to come up with a better

understanding of the input data. These types of algorithms generally detect similarities

or differences between records and variables and then try to group them [129, 130, 138].

Two main types of unsupervised learning are dimensionality reduction and cluster-

ing [129, 130]. In dimensionality reduction, the algorithms try to reduce the number of

variables or features associated with a sample of data. Dimensionality reduction is very

useful in preprocessing, feature engineering, noise reduction, and generating plausible

artificial datasets. Whereas, clustering is used for grouping records and is very popular

for performing customer segmentation tasks, where algorithms group those customers

together who have similar shopping behaviour.

3.5.3 Semi-supervised Learning

Semi-supervised learning is in-between supervised and unsupervised learning. This

type of learning is employed in situations when only some of the labeled data is avail-

able. The main goal of this type of learning is to use a large collection of unlabeled data

with a few labeled samples for improving the performance of the generalization [142].

An example of semi-supervised learning is a photo archive application where only some

of the images are labeled, and many of the images are not labeled. Semi-supervised

learning has wider use in bioinformatics, text and web mining, database marketing,

and video indexing where only a portion of input data is labeled [142].

3.5.4 Reinforcement Learning

In reinforcement learning, the algorithm learns how to act in a specific environment on

the basis of feedback it receives. In this type of learning, the algorithm learns directly

from the input data as it comes in, rather than being trained over static data as in

the case of supervised learning. However, decisions are not being made on the basis of
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immediate rewards but are taken on the accumulation of awards in the entire learning

process [110, 143, 144].

All of the above four types of learning techniques are simplified in Fig. 3.4.

Figure 3.4: Types of learning techniques.

3.6 Learning Process of Neural Networks

A neural network accepts inputs, X1, X2, X3, ...., Xn, a specific weight W1, W2, W3,

...., Wn is multiplied to each element of the input. These weighted inputs are then

summed together along with a bias term, and then the summation is passed through

a function f to generate the output y = f(Z), as illustrated in Fig. 3.5. The result can

then be transmitted to other neurons [143].

Figure 3.5: Learning mechanism of ANN.

In a more detailed mathematical form, given Xn, real parameters Wi ∈ R, where i =
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1, 2, 3, ..., Xn, and a bias term (b ∈ R), the calculation of the first step is:

Z = W1X1 + W2X2 + .... + WnXn + b, (3.1)

now, the next step is to apply a function f to Z, predicting the output y.

y = f(Z) = f(W1X1 + W2X2 + .... + WnXn + b), (3.2)

weights are real numbers. The weights on a connection from one neuron into another

neuron indicate how strongly one neuron affects the other one. It also indicates whether

the effect is positive or negative, i.e., a direct or inverse relationship. In the initial

iteration, the values of weights are randomly initialized within the range of 0 to 1.

After the first iteration is executed, these values get updated, allowing the iterative

process to start again. The bias term assists the neural network in producing better

results by allowing each layer to model a true linear combination of the input values.

The value of the bias is a constant and is also referred to as the intercept.

In neural networks, inside each node or neuron, there is an activation function, typically

a non-linear function, which helps to make the model non-linear. If this non-linear

activation function is removed from a neural network, then the several hidden layers

will collapse due to a series of matrix multiplications, resulting in an extremely simple

linear model. The activation function is employed for transforming an unbounded input

into an output that has a nice, predictable form. Various types of activation functions

are used in neural networks, as discussed in section 3.6.2.

The values of weights and biases in a neural network can be optimized through the

training process to produce highly accurate predictions based on the input data by

adjusting for error feedback. Neural networks typically require many runs (or epochs)

to tune the weights and biases of nodes. To adjust the optimal weights and biases

of a neural network model, a function is used to measure error. This function is

called the loss function, also known as the cost function, and it measures the difference

between the network-predicted outputs and the real outputs in the dataset. The loss

function is computed in each iteration to assess the progress of the neural network

model throughout the iterative procedure. The primary objective is to determine the

weight and bias values that minimize this cost function.

3.6.1 Training a Neural Network

For training a neural network model, the input dataset is commonly split into three

other datasets: training, validation, and test. Both the train and validation sets are

used for training the network. The network uses the training set as input, while the
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validation set is employed by the loss function to compare the output of the neural

network to the real data. The test set is used at the final stage once the network has

been trained. This set evaluates how the network can perform on the data which the

network has not seen during the training process. Training a neural network involves

setting up a loss function, which indicates how accurate the output of the neural

network model is. The main aim of a neural network model is to predict output

that minimizes the loss function.

While building and training neural network models, two important issues can arise:

underfitting and overfitting [138]. Underfitting and overfitting are similar to the con-

cepts of variance and bias for a model. Generally, if a model is not capable enough to

learn the patterns and relations in a dataset, there will be a high training error, and

such a model is referred to as a model with high bias. This situation is referred to as

underfitting. On the other hand, if a neural network model is too flexible for a given

dataset and able to learn patterns, relations, and even noise in the training data, it

may cause a large increase in the test error compared to the training error. The larger

the gap between the test error and the training error, the more it indicates that the

model has high variance. This situation is called overfitting.

Neither high variance nor high bias is desirable in practical scenarios. The final objec-

tive of neural networks is to find a model with the lowest possible values of variance

and bias at the same time. Underfitting is a less problematic issue than overfitting,

and it can be solved by making the network larger or more complex. This means al-

tering the architecture of the network, increasing the number of units in the layers, or

adding more layers to the network. The overfitting problem can be fixed by making

the network smaller or providing more training data to it.

There are many other methods for preventing the problems of underfitting and over-

fitting in practice, some of which are explained in section 3.6.2.

3.6.2 Parameters and Hyperparameters of Neural Networks

Parameters are properties that affect how a model makes predictions from a particular

dataset. Parameters can be learned from the data and modified dynamically. Hy-

perparameters show that how a model learns from the data. Hyperparameters are

higher-level properties, not typically learned from the data and are defined before the

beginning of the training process. Hyperparameters can be fine-tuned to improve the

accuracy of a neural network model. An essential part of building a neural network is

the process of fine-tuning the hyperparameters by playing around with the hyperpa-

rameters and performing error analysis to address issues affecting the network.

26



Chapter 3. Artificial Neural Networks for GW-based SHM/NDT

To achieve accurate predictions from a neural network, it needs tweaking a lot of hy-

perparameters such as the number of hidden layers, the number of neurons in each

layer, the number of epochs, the learning rate, the batch size, activation functions,

regularization strategies, and optimizers [145, 146]. Each of these hyperparameters is

briefly explained below:

The number of hidden layers: Neural networks with a single hidden layer can

also perform well on many problems. However, complex problems may require more

layers. Extra hidden layers enable the model to learn more complex decision bound-

aries. To determine whether adding new hidden layers is beneficial, understanding their

role in a neural network is crucial. Each hidden layer form a model representation of

its input data, with earlier layers creating lower-level representations and later layers

creating higher-level representations.

The number of neurons in each layer: The number of neurons or nodes in a

layer of a neural network relates to the structure of both the input and output data.

There is no clear way to know in advance the right number of layers or the right num-

ber of neurons per layer. This has to be figured out by the trial and error approach.

Increasing the number of layers and neurons per layer extends training time, requires

more computational power, and necessitates additional hyperparameter tuning.

Epochs: Epochs represent the number of times a neural network adjusts its weights

in response to the data passing through and its resulting loss function. A single epoch

constitutes one training iteration in which the neural network processes all training

instances. More epochs allow a network to learn more from the data, but there is a

risk of overfitting, particularly with larger datasets.

The learning rate: The learning rate determines the size of the steps the model

takes to reach the local or global minima in each iteration. Lower learning rates result

in slower learning but may yield better models, while higher learning rates speed up

learning but can lead to convergence issues.

The batch size: Batch size specifies the number of instances fed to the neural network

during a single iteration, which will be used to perform a backward or forward pass

through a network. A new set of instances is used for the next iteration. Batch size

also helps in improving the ability of the model, and generalize well to the training

data, because in every iteration, it is fed with new combinations of instances, which is
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very useful when dealing with an overfitted model.

There is no specific rule to find the right values for the number of epochs, the learning

rate, and the batch size in advance, these values have to be figured out through trial

and error.

The activation functions: Activation functions determine which individual neu-

rons are activated in a neural network. The activation functions also add non-linearity

to neural network models, enabling them to learn complex patterns [138].

The most common activation functions include sigmoid, softmax, tanh (the hyperbolic

tangent function), and ReLU (Rectified Linear Unit). Each activation function has its

uses in neural networks, choosing an activation function for a neural network depends

on the problem. However, the ReLU activation function has been proved to outperform

other activation functions in most situations.

i. Sigmoid: The sigmoid function is also known as the logistic function. This

function converts the output of the model into a probability. The output values

of a sigmoid function ranges from 0 to 1. This function is commonly employed at

the final layer of an ANN for binary classification problems. The mathematical

formula of the sigmoid function is as follows:

f(x) = σ(x) =
1

1 + e−x
(3.3)

ii. Softmax: The softmax function shrinks the values of a list to be between 0

and 1, ultimately makes the sum of all the elements to 1. This function is

also commonly used at the last layer of a neural network but for multi-class

classification problems, as it can generate the probabilities for each of the different

output classes. However, it can also be applied for binary classification problems.

While using the softmax function, the class with the highest probability is chosen

for the final prediction. The mathematical formula of the softmax function is as

follows:

f(x) =
exi

K∑
j=1

exj

, (3.4)

where K is the number of classes in a multi-class classifier.

iii. Tanh: The tanh activation function is quite similar to the sigmoid function and it

is usually used in the hidden layers of a neural network. Its values range between

−1 and 1. The formula for tanh function is:

f(x) = tanh(x) =
ex − e−x

ex + e−x
, (3.5)
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tanh functions are computationally expensive, therefore, ReLUs are often used

instead [147].

iv. ReLU: ReLU is currently the most widely used activation function for hidden

layers. The equation for ReLU is very simple:

ReLU(x) = max(0, x), (3.6)

the ReLU function seems pretty linear, it is just f(x) = 0 for x < 0 and f(x)

= x for x ≥ 0. Furthermore, its mapping functionality of all negative values to

0 helps in avoiding overfitting and it also assists in training the model faster.

Recently, different variants of ReLU functions have been proposed, such as leaky

ReLU [148] and Parametric ReLU (PReLU) [149].

Regularization: Overfitting occurs when a model relies too heavily on certain fea-

tures,performing well on training data but failing to generalize to unseen or test dataset.

In order to avoid this problem in neural networks, regularization is used. Regulariza-

tion techniques attempt to modify the learning algorithm in a way that reduces the

variance of the model. Regularization methods intend to reduce the generalization

error while not increasing the training error. These techniques provide some kind of

restriction that assists with the stability of the model [138, 150].

There are different types of regularization techniques, among them L1 and L2 regu-

larization, dropout, early stopping, data augmentation, and adding noise are the most

commonly used. All of the mentioned types of regularization techniques are briefly

described below:

i. L1 and L2 regularization: Both of these techniques add a regularization term

to the loss function as a way of penalizing high weights that may affect the

performance of the model. This type of regularization is also called weight reg-

ularization. L1 is generally used for feature extraction tasks as it creates sparse

models, while L2 has proven to work better for regular data problems. The

main difference between these two techniques is that L1 uses the absolute values

of the magnitude of the weights, while L2 uses the squared magnitude of the

weights [138].

ii. Dropout: Another common regularization technique is a dropout, which is used

for preventing overfitting in ANNs [151]. It randomly selects nodes at each itera-

tion during the training process and removes them along with their connections.

The dropout is very useful in minimizing co-adaptation, which is when multi-

ple neurons in a layer extract the same or very similar features from the input
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data. Co-adaptation among neurons can arise when the connection weights for

different neurons are nearly identical. Co-adaptation commonly occurs in fully

connected layers which has a larger number of neurons. Co-adaptation can lead

to redundant neurons computing and overfitting.

iii. Early stopping: Early stopping technique is to stop training the neural network

once the error for the validation set starts increasing while the training set error

is decreasing. This technique can easily be added to a neural network without

significantly altering the training procedure and it is extensively being used in

practice [112, 113, 138].

iv. Data augmentation: Data augmentation is a regularization technique, it tries

to prevent overfitting by training the model on more training data. In this tech-

nique, the available data is transformed in different ways and then fed into the

neural networks as new training data [138]. Data augmentation has proved to be

very effective in many domains especially for object detection and object recog-

nition in computer vision and speech processing.

v. Adding noise: The underlying idea behind this technique is the same as that

of data augmentation. In order to minimize overfitting, new data examples are

generated by injecting some noise into the available data [152].

Optimizers: The process of altering the values of the parameters in order to minimize

the loss function and to get the optimal values of the parameters is called optimization.

Different types of optimization algorithms also called optimizers are being used in

ANNs. The most common one is Gradient Descent (GD), which tries to find some local

or global minimum of a cost function [153]. GD does so by determining the direction

in which the model should move to minimize the error. It updates the weights of a

model based on a gradient of the loss function until it reaches the minimum loss. GD

utilizes backpropagation [154] also called backward propagation for finding the optimal

gradient for a neural network model.

Backpropagation involves calculating the gradient of the cost function with respect to

the biases and weights in each layer along with the network. As the biases and weights

are not directly contained in the loss function, therefore, the chain rule of differential

calculus is leveraged for propagating the error from the loss function in the reverse

direction until it reaches the input layer of the network. Next, a weighted average of

the derivatives is calculated, which is used for updating the values of biases and weights

before running a new iteration. Backpropagation is used for determining the direction

in which the biases and weights should be updated for the purpose of reducing the
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error until it reaches a minimum point. It should be noted that backpropagation does

not always find the global minima, because it stops updating after reaching the lowest

point in a slope, regardless of any other regions.

The size of the gradient in GD depends on the learning rate, which defines how quickly

a neural network will update its weights. Smaller learning rates are more likely to

reach the minimum, but it may take longer. On the other hand, a model with a

larger learning rate will reach the minimum loss quicker, but could also overshoot the

minimum.

An improved version of GD is Stochastic Gradient Descent (SGD), which basically

follows the same process as of GD, the only change is that SGD takes the input in

random batches instead of in one chunk. This functionality of SGD improves the

training times while reaching outstanding performance and also reduces the use of

heavy computational resources.

Some of the other popular optimizers used in neural networks are the Levenberg-

Marquardt algorithm, Adam, momentum, Nesterov accelerated gradient, Adagrad,

Adadelta, and RMSprop.

3.7 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are said to mimic the visual cortex of mam-

malian [138, 155]. CNNs are the most widely used type of neural networks for computer

vision and image processing tasks [123, 156–159]. CNNs have also been applied in nat-

ural language processing and speech recognition tasks. Similar to ANNs, CNNs are

composed of neurons that accept inputs, which are processed using weighted sums and

activation functions. However, in contrast to ANNs, which accept vectors as inputs,

CNNs typically employ images as their input. CNNs include the feature extraction

within its training process, and the weights are also determined through the train-

ing process. A typical CNN accepts image(s) as input, and passes through a series

of convolutional (feature extraction) layers, pooling (dimensionality reduc-

tion) layers, and fully connected (FC) layers [113, 160, 161]. These three main

components of CNNs are elaborated in the following subsections.

3.7.1 Convolutional Layers

This is the first step in extracting features from an image. A convolutional layer in

CNNs is employed for detecting patterns in an image (represented as a matrix of pixels)

using filter(s), also known as kernels [113, 138, 147]. Filters play a significant in image
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recognition; they are used to transform inputs and extract features that enable CNNs

to recognize specific images. A filter is just a matrix, applied to a subsection of the

input image through a convolutional operation, and the output of this operation is

stored in another image known as feature map or activation map, which ultimately

serves as input for the next layer. The feature map stores the highlighted patterns

found by the filter. These filters are similar to the weights in ANNs; their values are

not set in advance but are learned by CNNs automatically [113, 147, 160, 161]. An

element-wise multiplication is performed on the selected region (the same shape as the

filter) from an input data and a filter of size n ∗ n. The element-wise product is just

the multiplication of an element from the selected region from the input image to the

corresponding value from the filter. Afterward, these values are summed together and

the summation of all these values is inserted into the feature map, as shown in Fig. 3.6.

Figure 3.6: Convolution operation between the image and filter.

In this example, a filter of size 3 ∗ 3 is applied to the top-left region of the image for

the first iteration. For the next iterations, the same operation is applied by sliding the

filter to the right by one column (horizontally) or one row (vertically) in a downwards

direction from the input image. This sliding operation is performed step-by-step until

the entire image is covered; the parameter defining the length of this sliding operation

is known as the stride [113, 160, 161]. The size of stride is the horizontal or vertical

offset of a filter matrix as it moves along the input data. In the above case, stride size

is set to 1, but it can also be set to 2 or 3 or any other appropriate value. With a larger

stride size, there will be fewer overlapping pixels, but the resulting feature maps will

have smaller dimensions, potentially causing the CNNs to lose some information. In

addition to the above process, a convolution also uses a trainable bias term. The bias

term is added to the output of each resultant matrix from element-wise multiplication.

In a convolution operation, the number of element-wise product matrix depends on the
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dimension of the input data, kernel matrix, and the size of the stride. The resultant

feature map from the convolution operation has smaller dimensions than the input

image. In the above example of a convolution operation, if a filter of size 2 x 2 and the

stride size of 2 is applied, the last row and the last column of the input data matrix

would not have been used in the convolution. In such situations, a technique known as

padding is used [160, 161]. Padding consists of adding a layer of pixels with a value of

zeros to the edges. As 0 multiplied by any number results in 0, padding does not affect

the matrix dot products. Padding is crucial for removing distortions and controlling

the size of the feature maps.

In an actual CNN, multiple filters are used, and several feature maps are generated. As

the network grows in terms of the number of layers, the filters perform more complex

operations that make use of previously detected features. Once the input has been

passed through all the filters, the output is fed into an activation function. ReLU is

mostly used in CNNs, as it has shown outstanding performance. The output generated

from the convolutional layer becomes the input of the subsequent layer, which is mostly

a pooling layer [160, 161].

3.7.2 Pooling Layers

Typically, pooling layers are the final step in the feature selection process. Pooling

layers are used for dimensionality reduction and thresholding, and they are also referred

to as downsampling [113, 160, 161]. The convolutional layer finds numerous features in

an image, many of which may not be necessary. Pooling layers extract the most relevant

features while disregarding less common features found only in a few examples, as well

as potential distortions, thereby preventing overfitting. Pooling layers mostly reduce

the height and width of the input data by half, resulting in fewer computations and

faster neural networks training [160, 161]. The depth or number of channels in the

input remains unchanged since pooling layers apply the same operation to all channels

of the image. Pooling layers not only reduce the output from the convolutional layers

but also effectively eliminate any noise present in the extracted features, leading to

improved model accuracy.

Similar to a convolution operation, a filter matrix is used in pooling. However, the

pooling filter does not contain any weights and also does not perform any matrix

element-wise matrix multiplication. It only applies a reduction operation to subsec-

tions of the input data. Furthermore, the same concept of strides and padding as in

convolution layers are also used here.

Pooling layers select the relevant features from subsections of the image by either taking
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the maximum value or averaging the values in the subsection of the image, which are

termed as max pooling and average pooling, respectively. Max pooling is commonly

used in CNNs as compared to average pooling [162]. The reason for wider usage of

max pooling is due to preserving the most relevant features, while average pooling

has proven to work better in smoothing related tasks in images. An example of max

pooling is shown in Fig. 3.7.

Figure 3.7: Max pooling with a 2 x 2 filter and stride size of 2.

The depth of the CNN is adjusted as needed by repeating convolution-pooling se-

quences, extracting high-dimensional features from input data, and employing fully-

connected layers for classification.

3.7.3 Fully Connected Layers

The fully connected (FC) layers are defined at the end of the CNNs after the input

has passed through a set of convolutional and pooling layers [113, 160, 161]. The data

resulting from the layer preceding the first FC layer is flattened into a vector, which

is then fed into the FC layer. The primary purpose of the FC layers is to consider all

the features detected by the previous layers and obtain the expected output form [160,

161].

In FC layers, a relevant activation function (usually a softmax function) is applied for

the final prediction. Similar to ANNs, classification is performed by calculating the

probability of the image belonging to each class label. The class label with the highest

probability is selected as the final prediction for that image. The complete architecture

of a CNN is illustrated in Fig. 3.8.

CNNs are primarily trained in a supervised manner, commonly employing the stochas-

tic gradient descent technique, also known as the backpropagation (BP) algorithm. In

each BP iteration, the gradient magnitude (or sensitivity) of every network parameter,

including weights in convolutional and fully-connected layers, is calculated. These pa-
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Figure 3.8: The overall architecture of a CNN.

rameter sensitivities are then used to incrementally adjust the CNN parameters until

a certain stopping criterion is met.

Many researchers have conducted exploratory work and proposed various CNN ar-

chitectures. Currently, the most famouse ones include Resnet [140], AlexNet [157],

VGG [163], and Inception [164].

3.8 Recurrent Neural Networks

Typically, the input data fed into the neural networks have a fixed length. Due to this

reason, most neural networks have a feed-forward structure, which means they utilize

multiple layers of fixed sizes to compute the output. However, sometimes, a sequence

of inputs with varying sizes, such as in the case of text data, needs to be handled

by the neural networks. In such situations, Recurrent Neural Networks (RNNs) are

used, specifically developed to work with sequential data of varying lengths [110, 137,

138]. Recently, RNNs have become very popular in various applications, including text

translation, speech recognition, chatbots, stock market forecasting, and many more.

RNNs process inputs (X ) and generate outputs (z ), with the output being influenced

by both the current input and the entire past input history, often referred to as the

model’s internal state or memory. This history comprises ordered and interconnected

data sequences like time series data. RNNs contain loops, allowing information to

remain in memory for longer periods, even when a subsequent set of input is being

processed, which can be useful for analysing the next bit of information [110, 137, 138,

165]. This memory-keeping ability makes RNNs very accurate in predicting what is

coming next. The main component of RNNs is their cell. A basic representation of an

RNN process for a single input is shown in Fig. 3.9.

The rolled form of RNN represents the true depiction of the RNNs network. It is

composed of a single cell (although a multi-layer RNN will have multiple stacked cells)

and three types of connections: input, recurrent, and output. The unrolled diagram

35



Chapter 3. Artificial Neural Networks for GW-based SHM/NDT

Figure 3.9: Basic RNN architecture for a single input.

depicts a better representation of each of the connections in an RNN. In the unrolled

diagram above, the RNN consists of three times steps, which means that the length of

the input sequence of the RNN is 3. In this example, the RNN also outputs a sequence

of length 3.

At each time step in the above unrolled diagram, the arrow going into the cell shows

the token at that particular index of the input sequence. The arrows coming outside

in an upward direction from the cell show the output of the cell. The left-to-right

arrows connecting the cell at each time step are the recurrent connections, which are

the foundation of an RNN and represent the transmission of the state of each time

step. This state in RNN provides information about the cell input and output from

previous time steps to the cell at the current time step. This recurrent connection is

very useful for capturing dependencies that make it easier to calculate probabilities

and then perform predictions.

A default RNN cell is composed of two fully connected layers. The first layer is used

for computing the state of the cell at a particular time step based on the previous state

and the time step of the input. The second fully connected layer is used for computing

the output of the cell at the time step. Furthermore, RNNs employ a special type

of backpropagation technique for training, known as Backpropagation Through Time

(BPTT) [110, 166]. As the loss here is defined as the sum of losses at each time step.

In BPTT, the usual chain rule, along with the sum of the gradients at each time step

over time, is applied.

Traditional RNN models sequential data by mapping the input sequences to hidden

states, and then hidden states to outputs by employing the following recurrence equa-
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tions:

ht = f(WXXt + Whht−1 + bh)

zt = f(Wzht + bz), (3.7)

where Xt is the input data, ht ∈ RN is the hidden state with N hidden units, f is

an element-wise non-linear function, such as hyperbolic tangent or sigmoid, and zt is

the output at time t. WX , Wh, and Wz represent the weights at the input, hidden

and output layer, respectively. For a length T input sequence (X1, X2, X3,...,XT ), the

updates according to the equation 3.7 are computed sequentially as h1 (letting h0 =

0 ), z1, h2, z2, ..., hT , zT .

Cell layers in RNNs can also be stacked. A basic representation of stacked RNN for

two cell layers is shown in Fig. 3.10.

Figure 3.10: Diagram of an RNN with 2 cell layers.

At each time step, the output of the first cell becomes the input for the second cell, and

the output of the second cell is the output of the overall RNN for that particular time

step. Stacking cell layers allows the model to capture more complex features from the

input data, leading to improved performance when trained on a large dataset. However,

it can also increase the risk of overfitting. This makes regularization techniques, such

as dropout, more essential as the size of the network is increases.

RNNs also allow sequences of input data to be processed in the form of a sequence of

inputs, a sequence of outputs, or even both at the same time, as shown in the following

diagram.
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Figure 3.11: Sequence of data handled by RNNs.

Here, the bottom boxes represent the inputs, the middle boxes show the state of the

RNN at that particular input, and the top boxes are the outputs.

While regular RNNs work well for most tasks, they are not always the best option.

RNNs can also process sequences in both forward and backward directions, known as

bidirectional RNNs [110, 167]. In the preceding examples, the direction of recurrent

connections was only from left-to-right (only forward). In bidirectional RNNs, the

recurrent connections also have a backward loop that looks at information from right

to left. By processing a sequence in both directions, RNNs can take into account

both past and future predictions, leading to improved performance in understanding

sequences.

A regular RNN can capture all the necessary dependencies in an input sequence, but it

struggles with handling long-term dependencies, such as dependencies between words

that are far apart in a text sequence. To handle long-term dependencies, two variants

of RNNs are commonly used: Long Short-Term Memory (LSTM) and Gated Recurrent

Units (GRU) [168].

3.8.1 Long Short-Term Memory (LSTM)

LSTM is specifically developed to keep track of all the relevant dependencies in a

sequence. LSTMs were developed to tackle vanishing and exploding gradient prob-

lems [137, 138, 169]. An LSTM adds a few additional layers to the default RNNs.

These additional layers are referred to as gates, which are helpful in regulating the

information that is added or removed from the cell state. The additional gates enable

the LSTM to handle long-term dependencies by providing a mechanism for selectively

permitting or blocking information flow. They consist of a sigmoid neural network

layer combined with a pointwise multiplication operation. Furthermore, the hidden
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states in LSTM hold the short-term memory, while the cells state holds the long-term

memory.

An LSTM has three gates (forget gate, input gate, and output gate) to control and

protect the cell state, as shown in Fig. 3.12.

Figure 3.12: Architecture of the LSTM cell.

The first step in LSTM is to determine which information needs to be discarded from

the cell state. This determination is carried out by a sigmoid layer known as the

forget gate layer. It assesses the input from ht−1 and Xt and produces an output value

between 0 and 1 for each element within the cell state Ct−1. A value of 0 signifies the

previous cell state is completely forgotten, while a value of 1 represents the cell state

is completely retained. Mathematically:

ft = σ (Wf · [ht−1, Xt] + bf ) , (3.8)

the subsequent phase involves determining which new information is going to be stored

into the cell state, and this operation comprises two components. Initially, the input

gate layer, a sigmoid layer, identifies which values should be modified. Following this,

a tanh layer generates a vector of new potential values, denoted as C̃t, which could

be appended to the current state. In the subsequent step, these two components are

combined to formulate an update for the state.

it = σ (Wi · [ht−1, Xt] + bi)

C̃t = tanh (WC · [ht−1, Xt] + bC) ,
(3.9)

Now, in this step, the old cell state (Ct−1) needs to be updated to the new cell state
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(Ct). To achieve this, the old state is multiplied by ft, effectively eliminating the

elements designated for forgetting. Subsequently, the product of it and C̃t is added.

Ct = ft ∗ Ct−1 + it ∗ C̃t, (3.10)

in the final step, the output is derived from the cell state but in a refined form. Initially,

a sigmoid layer is employed to determine which aspects of the cell state should be

presented as output. Following this, the cell state undergoes a tanh transformation to

confine the values within the range of −1 to 1, after which it is multiplied by the output

from the sigmoid gate. This multiplication ensures that only the selected portions are

included in the final output.

ot = σ (Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh (Ct) ,
(3.11)

LSTMs are more powerful than basic RNNs because LSTMs use more parameters and

have an explicit cell state. However, training an LSTM takes more time, is more

computationally expensive, and is also more prone to overfitting [137, 138, 170].

3.8.2 Gated Recurrent Units (GRUs)

GRU is an excellent alternative to LSTM, and it works very well on smaller datasets [110,

171]. Since LSTMs have many parameters and are much more complex than regular

RNNs, researchers developed GRU to reduce the complexity of LSTM and simplify

it a little without losing its significant predictive capability. GRU merges the input

and forget gates into a single gate, the “update gate”. It also combines the cell state

and hidden state. GRUs provide the same performance as LSTMs in many situations,

especially with smaller datasets, but with fewer parameters and faster training time.

Both variations of RNNs (LSTM and GRUs) can be stacked together, and both have

bidirectional functionality [165, 171].

3.9 ANNs in GW-based SHM/NDT

GW-based damage identification techniques produce vital information regarding the

existence, location, type, and size of defects in various kinds of structures, such as

civil, mechanical, and composite structures [172–176].

Recently, Scanning Laser Doppler Vibrometry (SLDV) has been widely employed for
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measuring GWs on a very dense grid of points over the surface of a large specimen (full

wavefield) [176–179]. Such wavefields contain rich information about the interaction

of GWs with potential defects. However, due to the complex nature of these full

wavefields, analysing them is very difficult for conventional physics or classical machine

learning-based models. On the other hand, ANN-based approaches have shown much

better performance in handling such nonlinear and complex data in various domains,

such as speech recognition, computer vision, object detection, remote sensing, medical

sciences, and many more [4–6, 180].

In the last two decades, many researchers have applied ANNs and their different vari-

ants for damage detection using GWs. Mardanshahi et al. [181] applied support vector

machines (SVM), multilayer perceptron (MLP), and linear vector quantization (LVQ)

neural networks for the purpose of detection and classification of matrix cracking in

composites with the use of GWs. They first reduced their dataset with a dimensionality

reduction technique called linear discriminant analysis (LDA) to discriminate between

the classes and find a linear combination of features. They reported that the SVM

outperformed other basic neural networks on their data.

Fenza et al. [182] applied probability-based methods and ANNs together to determine

the degree and location of damage in composite and metallic plates by utilising Lamb

waves. Results from both of their methods shown quite good performance in the

detection and localization of micro defects in plate-like structures. Su and Ye [183] used

Lamb waves for the identification of delamination in composite structures by employing

multi-layer feedforward ANN architecture, wavelet transform, and Intelligent Signal

Processing and Pattern Recognition (ISPPR) technique.

Perfetto et al. [184] proposed a GW-based ANN approach, which was crafted using

the Finite Element Method (FEM), to identify the location of structural damage. The

initial portion of the study delves into the creation and evaluation of this modeling

approach. The precision of the FEM was validated by comparing its predicted outcomes

against both experimental and analytical data. Subsequently, the ANN was designed,

trained using an aluminum plate, and then tested on a composite plate, as well as

various damage configurations. The findings presented in their study demonstrate that

the ANN exhibits a remarkable ability to accurately detect and localize damage across

all investigated scenarios.

Feng et al. [185] presented two time of flight (ToF)-based damage localization tech-

niques using scattered Lamb waves in carbon fiber reinforced polymer (CFRP) plates.

In their method, a probability matrix is constructed first by the probabilistic approach,

which is used for the localization of damage, and then ANN is applied to improve the
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accuracy of damage localization.

Chetwynd et al. [186] applied MLP classification and regression neural networks on

the acquired GW responses from healthy and damaged CFRP. They used the MLP

classification technique to classify damaged and undamaged regions of CFRP, while

the MLP regression technique was applied to estimate the exact location of the damage

on the panel.

Melville et al. [187] used SVM and DL methods for detecting defects in metal plates

(aluminum and steel) by employing full wavefield signals of ultrasonic GW images.

They showed that DL methods performed better than the SVM.

Tabian et al. [188] presented a CNN-based technique for impact detection and local-

ization in composites. They transformed the acquired GW-based data into 2D images

and then applied CNN to perform health state classification. Ewald et al. [189] pre-

sented a DL technique for SHM with the use of Lamb waves. They preprocessed the

sensor signal responses by applying wavelet transform to acquire the wavelet coefficient

matrix (WCM). The WCM was then fed into the CNN to be trained to acquire the

neural weights.

Song and Yang [190] proposed a multi-scale DL-based approach for the detection of

subwavelength defect imaging using GWs. They combined two distinct fully convolu-

tional networks (FCN). The first FCN acted as a global detection network, detecting

subwavelength defects globally in a raw low-resolution GW beamforming image. The

second FCN worked as a local super-resolution network, resolving subwavelength-scale

details locally by finding the structural details of the detected defects.

Rautela et al. [191] presented a model-assisted DL approach for the detection and

localization of structural defects using ultrasonic GWs. They applied their combined

damage detection and localization approach on two different datasets: a time-history

dataset and a time-frequency dataset. Detection of defects was performed on both the

datasets using CNNs, and localization of defects was performed using regression-based

CNN and LSTM models. They showed that the DL-based predictions surpassed the

conventional machine learning approaches.

3.10 Conclusions

In this chapter, basic ANNs, biological neurons, and artificial neurons are discussed. A

brief history of ANNs is mentioned. Then the relationship and differences between AI,

ML, and DL techniques are elaborated. After that different types of learning tasks,

which are carried out by machine learning and ANNs techniques are described. The
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learning and training process of a basic neural network is demonstrated. The parame-

ters and hyperparameters of ANNs and their tuning techniques were described, which is

very essential for the optimal output of a neural network. Then the working mechanism

and applications of the two very popular architectures of ANNs: CNNs and RNNs (par-

ticularly LSTMs) are explained. The applications of ANNs and their variants (MLPs,

CNNs, and RNNs) in GW-based SHM and NDT techniques are discussed.

Despite the extensive use of DL, the integration of DL techniques in the domain of

GW-based damage identification has been rather limited. The exploration of DL ca-

pabilities within this context is still in its nascent stages, with only a few researchers

having applied DL in GW-based damage identification. This, in turn, implies that

there is substantial room for further investigation and innovation in this domain. As

the potential benefits of leveraging DL for GW-based damage identification become

increasingly evident, it becomes evident that there is still much work to be done in

order to fully harness its capabilities and unlock its transformative potential.
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Dataset Computation and Preprocessing

4.1 Dataset Computation

In this research work, a synthetic dataset was generated by simulating propagating

waves within carbon fiber reinforced composite (CFRP) plates. This was accomplished

by using a parallel implementation of the time-domain spectral element method based

on Mindlin-Reisner plate theory. Fifth order spectral elements with 36 nodes in each

element were used. This gave a reasonable computation time in comparison to the

use of solid elements and good accuracy, as detailed in [192]. Essentially, this dataset

resembles the particle velocity measurements observed at the lower surface of the plate,

acquired through Scanning Laser Doppler Vibrometry (SLDV) in the transverse direc-

tion in response to piezoelectric (PZT) excitation at the center of the plate. The input

signal employed was a five-cycle Hann window-modulated sinusoidal tone burst with

a carrier frequency of 50 kHz and the modulation frequency of 10 kHz. Opting for

a relatively low carrier frequency offered several advantages, including the ability to

employ a less dense mesh and a considerable reduction in computational time com-

pared to simulations involving higher frequencies. Furthermore, the excitation signal

was selected so that interaction of generated A0 Lamb wave mode with the smallest

delamination can still be used as a feature for damage identification. To ensure that the

GWs had sufficient time to propagate to the edges of plate and return to the actuator,

the total wave propagation time was set at 0.75 ms. Further, 150000 time integration

steps were used to maintain the stability of the central difference scheme.

The material was a typical cross-ply CFRP laminate with the stacking sequence [0/90]4

was employed in the model. The properties of a single ply were as follows [GPa]:

C11 = 52.55, C12 = 6.51, C22 = 51.83, C44 = 2.93, C55 = 2.92, C66 = 3.81. These

property choices were made to replicate wavefront patterns and wavelengths closely

resembling those observed in wavefield measurements conducted with SLDV on CFRP
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specimens. These CFRP specimens were subsequently employed to evaluate the effec-

tiveness of the developed approach for identifying delamination. Specifically, for nu-

merical simulations, the shortest wavelength of the propagating A0 Lamb wave mode

was 21.2 mm, whereas for experimental measurements, it was slightly shorter at 19.5

mm.

Figure 4.1: Setup for computing Lamb wave interactions with delamination.

A total of 475 scenarios were simulated to represent the propagation and interaction

of Lamb waves with single delamination in each case. In each scenario, a single delam-

ination was incorporated into the model using the technique of node splitting between

appropriate spectral elements. The composite laminate was assumed to consist of eight

layers, with a total thickness of 3.9 mm. The delamination was specifically modeled

between the third and fourth layers, as illustrated in Fig. 4.1. It is important to note

that Fig. 4.1 presents an exaggerated cross-sectional view of the delamination.

In the dataset computation process, zero-volume delamination were considered, and

their spatial locations were randomly determined to introduce variability in the in-

teraction between GWs and delamination. This variation included cases where the

delamination was positioned at the corner of the plate, which is particularly challeng-

ing for signal processing methods to detect. Additionally, the size and shape of the

delamination were randomly generated, involving the selection of the minor and major

axes of an elliptical shape. Furthermore, the angle between the major axis of the de-

lamination and the horizontal axis was chosen randomly. The simulated delamination
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scenarios incorporated these various random factors:

� the geometrical size of the delamination, represented by 2b and 2a, namely ellipse

minor and major axis, was randomly selected from the interval [10 mm, 40 mm],

� the angle of the delamination (α) was also randomly chosen within the range of

[0◦, 180◦],

� the coordinates of the centre of delamination (xc, yc) were randomly determined

within two intervals [0 mm, 250 mm − δ] and [250 mm + δ, 500 mm], where δ =

10 mm). The parameter δ was selected to avoid situation in which the delamina-

tion is in proximity to an actuator or directly below it.

The output, consisting of particle velocities at the nodes of spectral elements on both

the upper and lower surfaces of the plate, was interpolated onto a uniform grid compris-

ing (500× 500) points. This interpolation was accomplished using the shape functions

of the elements (further details can be found in [193]). Essentially, this grid represen-

tation closely resembles measurements obtained by SLDV in the transverse direction,

which is perpendicular to the plate surface.

An example of the simulated full wavefield data obtained from both the top and bottom

surfaces is shown in Fig. 4.2. It is worth noting that a stronger wave entrapment

phenomenon at the delamination region is observed in the wavefield at the top surface,

primarily because the delamination within the cross-section is situated closer to the top

surface. This proximity makes delamination detection more feasible when processing

wavefields from the top surface. Additionally, it is important to mention that the

output from the wave propagation model is in the form of a 3D matrix, containing

wave amplitudes at location (x, y) and time tj . Consequently, this can be viewed as a

series of frames representing propagating waves at discrete time intervals.

Detecting delamination near the top surface is facilitated through the use of signal

energy, which is represented by root mean square (RMS), as defined in Eq. 4.1, applied

to the wavefield. The RMS is defined as:

ŝ(x, y) =

√√√√ 1

N

N∑
j−1

s (x, y, tj)
2, (4.1)

in this research study, a total of 512 sampling points (N = 512) were utilized. Con-

sequently, the dataset was reduced to 475 two-dimensional matrices, with amplitudes

represented as double-precision values. The outcome of this transformation is visually

depicted in Fig. 4.2. Based on image analysis, it becomes apparent that the shape of
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the delamination is more readily distinguishable in the top case. However, it should

also be noted that the dataset used in the research work is of the bottom case, which

was more challenging for the DL models than the top case.

(a) t = 0.145 ms (b) t = 0.200 ms (c) t = 0.250 ms

(d) t = 0.145 ms (e) t = 0.200 ms (f) t = 0.250 ms

Figure 4.2: Full wavefield at the top (a)−(c) and bottom surfaces (d)−(f), respectively, at
selected time instances representing the interaction of GWs with delamination.

4.2 Data Preprocessing

The dataset, consisting of frames capturing propagating waves (512 frames per delam-

ination scenario), was further converted to 8-bit greyscale images, and is accessible

online [194]. It encompasses a total of 475 distinct delamination cases, with each case

composed of 512 frames. This results in a total of 243, 200 frames or images, where

each frame is sized at (500 × 500) pixels, representing the dimensions of the specimen

(500 × 500) mm2.

However, utilizing all frames for each case incurs substantial computational and mem-

ory expenses. Notably, frames illustrating the propagation of GWs prior to encounter-

ing the delamination lack discernible features (as illustrated in Fig. 4.3). Consequently,

for the training process of all the developed models in chapters 5, 6, and 7, I opted to

select a specific number of frames starting from the initial interaction with the delam-

ination (f1) until a specific number of frames window (fw), considering the available
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computational memory.

Figure 4.3: A sample of frames from the full wave propagation dataset.

Figure 4.3 illustrates the selected frames at different time-steps of the propagating

Lamb waves before and after the interaction with the damage. The initial frame,

denoted as f1, illustrates the initial interactions of Lamb waves with the delamination.

This frame was computed based on the delamination’s location and the velocity of the

A0 mode of Lamb waves. On the other hand, fw represents the final frame within the

training sequence window, and fn shows the last frame in a delamination case; the

value fn is 512 for all of the delamination cases, as each delamination case is composed

of 512 frames.

To enhance the performance of optimizer throughout the training phase for all the

developed models in this research work, the colour scale values were normalised to a

range of (0−1) instead of the initial scale values, which were in the range of (0−255).

4.3 Dataset Division

It is a common practice in machine learning/DL to split a dataset into two distinct

subsets: a training subset and a testing subset. A third subset, named the validation

set, is also generated, but mostly, this subset is taken from the training subset during

the training process of an algorithm. The primary reason for dividing the dataset

into these three distinct subsets is to ensure the appropriate training, fine-tuning, and

evaluation of the model while avoiding the introduction of bias. Here is an overview of

each subset:

� Training set: As its name implies, this set is utilized for training the neural

network. In the context of supervised learning, it encompasses both the features

and the corresponding target values. Typically, this subset is the largest among

48



Chapter 4. Dataset Computation and Preprocessing

the three, as neural networks demand a substantial amount of data for effective

training.

� Validation set: The primary function of this set is to gauge the performance of

the model, facilitating adjustments to hyperparameters to enhance its effective-

ness. This fine-tuning process enables machine learning engineers to configure

hyperparameters that yield optimal results. Although the model is not directly

trained on this data, it indirectly influences it, which is why it is not used for the

final performance evaluation to avoid potential bias.

� Testing set: This set plays no role in the development or training of the model,

making it invaluable for conducting a final evaluation on unseen data. This

evaluation serves as a benchmark for the prospective performance of the model

on new datasets.

While there is no precise technique for determining the ideal split ratio for these three

sets, as data problems vary widely, developing DL solutions often involves a trial-and-

error approach. However, it is generally accepted that for larger datasets (comprising

hundreds of thousands or millions of instances), a split ratio of approximately 98%

for the training set, 1% for the validation set, and 1% for the testing set is effective,

emphasizing the need to allocate as much data as possible to the training set. For

datasets of more typical sizes, a common split ratio is around 60% for training, 20%

for validation, and 20% for testing. This data splitting process for a normal size data

is elaborated in Fig. 4.4.

To facilitate the training and evaluation of all the developed DL models in this research

work, elaborated in chapters 5, 6, and 7, I partitioned the dataset into two distinct

subsets: the training set, encompassing 80% of the data, and the testing set, which

comprises the remaining 20%. Furthermore, within the training set, 20% of the data

was set aside as a validation set. This validation set played a crucial role in verifying

the performance of model during the training phase.

4.4 Conclusions

In this chapter, the computation of the synthetic dataset, the materials used for gener-

ating it, and the specification of those materials are explained. The dataset employed

in this research work for developing all the DL models is elaborated. A sample of the

top and bottom cases of the full wavefield is shown. Furthermore, the data preprocess-

ing steps implemented all of the developed models in this research work are explained.
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Figure 4.4: The dataset splitting process.

Finally, the data splitting process for training a DL algorithm and the data division

process used in this research work are described.

Upon analysing the dataset, it was discovered that delaminations positioned closer to

the top surface are more easily detectable through RMS analysis. Consequently, the

decision was made to opt for the more challenging scenario of delaminations closer

to the bottom surface for training the DL models. Moreover, due to computational

constraints, it is impractical to input all frames into a DL model, necessitating the

use of a specific number of frames window that fits within the available computational

memory.
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DL-based delamination identification by
using animation of guided wave

propagation

5.1 Introduction

In this chapter, I describe the approach developed for the 1st task of this research work,

which is delamination identification using DL approach. The developed DL model is

able to process the full wavefield frames depicting the propagation of Lamb waves, as

detailed in the dataset described in the previous chapter (chapter 4). Consequently,

there was no need for additional signal post-processing techniques, such as Root Mean

Square (RMS). The employed DL model operated on a many-to-one prediction scheme,

signifying the utilization of multiple input frames to generate a damage map. In simpler

terms, a sequence of full wavefield frames, effectively forming an animation, served

as the input for the proposed DL model. The proposed model was inspired by the

Convolutional Long Short-Term Memory (ConvLSTM) [195] architecture and was fine-

tuned for the specific task of delamination identification. In the context of pixel-wise

segmentation, two classes were defined: “damaged” and “undamaged.”

Notably, this is among one of the first implementation of deep neural networks em-

ploying Lamb wave propagation animations through semantic segmentation for de-

lamination identification. The proposed approach exhibited remarkable proficiency in

identifying delamination in numerically generated datasets. Furthermore, the proposed

approach demonstrated a capacity for generalization, implying its potential applicabil-

ity in real-world scenarios. This assertion finds support in the experiments conducted

on Carbon Fiber Reinforced Polymer (CFRP) plates featuring single and multiple de-

laminations.

The image segmentation, ConvLSTM, the developed DL model architecture, and re-
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sults obtained from numerical and experimental data are elaborated in the subsequent

sections.

5.2 Image Segmentation

Processing an entire image as a single entity may not be a good solution for a deep

learning model, as there are often regions within an image that lack pertinent informa-

tion. Image segmentation, therefore, entails dividing an image into segments, allowing

for the selective processing of essential segments. This concept encapsulates the essence

of image segmentation. Image segmentation constitutes a foundational element in var-

ious visual recognition systems. Semantic segmentation, in particular, holds significant

relevance in the realm of image comprehension and plays a pivotal role in image analysis

tasks. Researchers in computer vision and machine learning are increasingly drawn to

the field of image semantic segmentation, given its growing importance. Many emerg-

ing applications demand precise and efficient segmentation techniques. In recent years,

image segmentation has found extensive application in diverse domains, including med-

ical applications [196], autonomous driving [197], augmented reality [198], agricultural

sciences [199], and more. Across these domains, semantic segmentation often surpasses

alternative approaches by delivering superior accuracy and efficiency.

The objective of image segmentation is to partition images or video frames into multi-

ple objects or segments [200]. This process can be framed as a pixel-level classification

problem with semantic labels, known as semantic segmentation, or as the partitioning

of images into individual objects, termed as instance segmentation [200, 201]. Con-

sequently, semantic segmentation is generally more complex than image classification,

which assigns a single label to the entire image [201]. Moreover, the effectiveness of

semantic image segmentation hinges not only on the semantics in question but also on

the specific problem being addressed [202].

To comprehend how modern DL architectures tackle semantic segmentation effectively,

it is essential to recognize that this field is not isolated but rather constitutes a nat-

ural progression from coarse to fine inference. It originates from classification, where

predictions pertain to the entire input, such as identifying objects within an image

or providing a ranked list for multiple objects. Localization or detection represents

the subsequent step, furnishing not only class labels but also spatial information, such

as centroids or bounding boxes. Semantic segmentation naturally follows as the next

stride toward achieving fine-grained inference, aiming to make dense predictions by

assigning labels to every pixel. Consequently, each pixel is associated with the class

of the object or region it belongs to. Further refinements can include instance seg-
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mentation (assigning distinct labels to different instances of the same class) and even

part-based segmentation (low-level decomposition of already segmented classes into

their components).

5.3 ConvLSTM

The dataset for this research task is composed of the animation of full wavefield frames,

which contains sequences of images. Each image or frame within the same delamination

case relies on its preceding frame, effectively creating a video-like scenario. While

Convolutional Neural Networks (CNNs), elaborated in section 3.7, have demonstrated

promising performance in various image analysis and computer vision tasks, they face

challenges when it comes to learning temporal features from sequences of images and

maintaining continuity with previous observations.

On the other hand, Long Short-Term Memory networks (LSTMs), described in sec-

tion 3.8.1, have excelled in processing time series data but exhibit limitations in cap-

turing spatial information when the input consists of consecutive images. To address

this issue, the ConvLSTM architecture was introduced by Shi et al. [195], offering a

solution to such problems.

Within ConvLSTM, convolution operations are applied in both the input-to-state tran-

sition and state-to-state transitions. This concept aligns with the idea of traversing

a series of images, one slice at a time, much like how an LSTM progresses through a

series of data points individually. This approach proves valuable when dealing with

image sets where the order of frames is crucial.

The ConvLSTM cell architecture, depicted in Fig. 5.1, represents a variation of the

LSTM, incorporating convolutional operations within the LSTM cell itself.

Essentially, ConvLSTM serves as a combination of convolutional operations and LSTM

cells, enabling the capture of both time-correlated and spatial features within a series

of consecutive images. Equation (5.1) depicts the ConvLSTM operations as the inputs

x1, . . . , xt, hidden states h1, . . . , ht, cell states c1, . . . , ct, and input, forget, and output

gates are represented as it, ft, and ot, respectively:

it = σ
(
Wxt ∗ xt + Wht−1 ∗ ht−1 + Wci · ct−1 + bi

)
ft = σ (Wxf ∗ xt + Whf ∗ ht−1 + Wcf · ct−1 + bf )

ct = ft · ct−1 + it · tanh (Wxc ∗ xt + Whc ∗ ht−1 + bc)

ot = σ (Wxo ∗ xt + Who ∗ ht−1 + Wco · ct + bo)

ht = ot · tanh (ct) ,

(5.1)

where (∗) indicates an element-wise multiplication operation.
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Figure 5.1: A single ConvLSTM cell at time t.

Recently, ConvLSTM has gained substantial popularity and is increasingly applied in

various image processing and computer vision applications.

5.4 The proposed approach

For the purpose of identifying delamination in CFRP materials, I developed a DL model

based on ConvLSTM approach. The proposed model leverages the full wavefield frames

depicting the propagation of Lamb waves to discern the presence of delamination. The

developed model follows a many-to-one sequence prediction approach. It operates by

considering a sequence of w frames, each representing the full wavefields progression

over time and its interaction with the delamination. These frames are used to extract

features indicative of damage and ultimately predict the location, shape, and size of

delamination in a single output image.

The proposed DL model takes 64 frames as input, i.e., the size of fw is set to 64 here,

and the dataset splitting is being performed according to section 4.3.

5.4.1 The proposed ConvLSTM model

The proposed ConvLSTM model, as illustrated in Fig. 5.2, comprises three ConvLSTM

layers. These layers are configured with varying filter counts: the initial ConvLSTM

layer employs 12 filters, followed by the second layer with 6 filters, and finally, the third

layer with 12 filters.

In all of the ConvLSTM layers a kernel size of (3× 3), and a stride of size (1) are used.
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To maintain output equivalence with the input under a stride of (1), the padding is set

to “same”.

Within these ConvLSTM layers, a tanh (hyperbolic tangent) activation function is

employed, ensuring that output values fall within the range of (−1 to 1). Additionally,

after the initial two ConvLSTM layers, a batch normalization technique [203] is applied

to enhance the performance of the model by providing the normalized output to the

next layer.

Figure 5.2: The architecture of the proposed DL model.

A 2D convolutional layer is employed at the last output layer, followed by a sigmoid

activation function. This arrangement yields output values within the range of (0, 1),

effectively indicating the likelihood of delamination.

To classify the output, a threshold value must be established, distinguishing between

damaged (represented as 1) and undamaged (represented as 0 in the case of employing

sigmoid activation function. Consequently, I set the threshold value at (0.5), desig-
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nating all values below this threshold as undamaged and considering only those values

surpassing the threshold as indicative of damage.

5.4.2 The Development Environment

For the development of the proposed DL model, Pycharm IDE (Integrated Development

Environment) Community Edition was used along with the Python version 3.8. The

Keras API [204] version (2.0.5) running on top of TensorFlow version (2.5.0) on two

Tesla V100 GPUs from NVIDIA, with each GPU having 32 GB of memory, resulting

in a total of 64 GB of GPU memory was utilized.

5.4.3 Evaluation Metrics

Assessing the performance of a DL model is essential to ensure its effectiveness, not only

on the training data but also on unseen data. Evaluation becomes relatively straight-

forward in supervised learning scenarios, where ground truth serves as a benchmark

for comparing the model’s predictions.

To evaluate the performance of the proposed model, the mean Intersection over Union

IoU , also known as the Jaccard index, was employed as the accuracy metric. IoU

has wide applications in image segmentation-based tasks. This metric calculates IoU

by assessing the intersection area between the ground truth and the predictions. A

graphical illustration of the IoU metric is shown in Fig. 5.3.

Figure 5.3: A graphical representation of the IoU .

As this task has two output classes (damaged and undamaged), IoU was specifically

calculated for the damaged class. Equation (5.2) illustrates the IoU metric:

IoU =
Intersection

Union
=

Ŷ ∩ Y

Ŷ ∪ Y
, (5.2)
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in the equation provided, Ŷ represents the predicted output, and Y corresponds to

the ground truth. Additionally, the percentage area error (ϵ) depicted in Eq. 5.3 was

utilised to evaluate the performance of the proposed model:

ϵ =
|A− Â|

A
× 100%, (5.3)

here, A and Â denote the area in mm2 attributed to the damage class in both the

ground truth and the predicted output, respectively. This metric serves as an indicator

of how closely the predicted delamination area aligns with the ground truth. A lower

(ϵ) value signifies greater accuracy in identifying the damage.

Moreover, it is worth noting that for all predicted outputs, the delamination localization

error (i.e., the distance between the delamination centers of the ground truth and the

predicted output) was found to be less than (0.001%) thus, it is not discussed further.

5.4.4 Hyperparameters tuning and DL model training

To enhance the IoU value and minimize the loss of proposed DL model, the Adam

optimizer [205] was employed. The Adam optimizer integrates a momentum term and

adapts the learning rate during training, yielding superior performance compared to

other optimizers. The detailed training configurations and values of the hyperparame-

ters are provided in Table 5.1.

Table 5.1: Configuration of the training process of the proposed model.

Hyperparameter Value

Loss function Binary crossy-entropy

Learning rate 3e-4

Batch size 2

Number of epochs 249

Early stopping 30 epochs

Since there is no simple approach to select the best parameters for training a DL model,

a trial-and-error approach was employed. The value of the regularization technique,

early stopping, was set into 30 epochs and was evaluated based on IoU of validation

data. During the model training process, if the IoU value on the validation data does

not increase for consecutive 30 epochs, the model stops training and saves the model

with the highest IoU value on the validation data. The training process of the proposed

ConvLSTM model is shown in Fig. 5.4.

During the training process of the proposed model, it achieved highest values of the

IoU at 219th epoch on training and validation data are 0.96 and 0.93, respectively.
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Figure 5.4: Illustration of the proposed ConvLSTM model training.

5.5 Results and discussions

In this section, I present the evaluation of the proposed model on the numerical test

data of 95 different cases and experimental data representing the frames of the full

wavefield propagation acquired by SLDV. The proposed model was evaluated using

both numerical and experimental data to demonstrate the capability to predict the

delamination shape, size, and location.

From the numerical cases, I selected four representative cases to illustrate the perfor-

mance of the model. In these numerical scenarios, predictions were derived solely from

the initial frame window following the damage interaction, given the availability of

delamination ground truths.

To assess the generalization ability of the proposed model, experimental data encom-

passing single and multiple delaminations were considered. Furthermore, the IoU

metric was employed to evaluate the performance of the proposed model.

5.5.1 Numerical cases

In the first numerical scenario, the delamination is located at the upper left corner,

located slightly away from the edges, as evident in Fig. 5.5a, representing the ground

truth (GT). This delamination case is considered to be easy for the proposed model

and has gained the highest IoU value (0.98) among all of the test cases. The predicted
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output of the model is illustrated in Fig. 5.5b.

In the second numerical case, the delamination is centrally located at the upper section

of the plate, as depicted in Fig. 5.5c, representing the GT. This case presents a chal-

lenging scenario as wave reflections from the edges of plate exhibit patterns similar to

those arising from the delamination itself. Consequently, Fig. 5.5d displays the model’s

prediction for this delamination case.

In the third case, the delamination is on the upper left corner, as showcased in Fig. 5.5e,

representing its GT. Similar to the second case, this scenario poses difficulty due to

edge wave reflections sharing resemblances with delamination reflections. This can be

observed from the predicted output of model for this particular case in Fig. 5.5f.

In the fourth test case, the delamination is located at the left bottom of the plate and

is touching the edges of the plate, with its GT shown in Fig. 5.5g. The prediction of

this case is shown in Fig. 5.5h. This case is considered the most challenging case for

the DL model to predict because wave reflections from the edge overshadows reflections

from delamination, and the size of the delamination is also tiny as compared to other

delamination cases. Due to these reasons, the proposed model has achieved the lowest

IoU value (0.63) among selected test cases.
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(a) GT image of 1st case (b) IoU = 0.98

(c) GT image of 2nd case (d) IoU = 0.89

(e) GT image of 3rd case (f) IoU = 0.86

(g) GT image of 4th case (h) IoU = 0.63

Figure 5.5: Delamination cases on numerical data (Figures: (a), (c), (e), and (g) correspond to
the GT of each numerical case. Figures: (b), (d), (f), and (h) represent the predictions of the
proposed model).
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As can be seen in all predicted outputs, the proposed model is able to identify the

delamination with high accuracy and without any noise.

Table 5.2 provides an overview of the evaluation metrics applied to assess the perfor-

mance of the proposed model, regarding the numerical cases shown in Fig. 5.5. As

shown in Table 5.2, the actual (A) and predicted areas (Â) of delaminations were

computed in mm2 with respect to each case. The percentage area error (ϵ) was also

calculated for the proposed model.

Table 5.2: Evaluation metric of the four numerical cases.

case number A [mm2] IoU Â [mm2] ϵ

1 842 0.98 871 3.4%
2 186 0.89 196 5.4%
3 272 0.86 318 16.9%
4 174 0.63 182 4.6%

The achieved mean IoU with respect to all numerical data of 95 cases was (0.90),

indicating a high level of predictive accuracy. Furthermore, the mean percentage area

error (ϵ) calculated for 95 numerical test cases was equal to 4.57%.

5.5.2 Experimental cases

In this section, I present an investigation into the performance of the proposed model

using experimentally acquired data. This experimental setup is similar to that of

the synthetic dataset, where a frequency of 50 kHz is applied to excite a signal in a

transducer placed at the centre of the plate. The A0 mode wavelength for this particular

CFRP material at such frequency is 19.5 mm.

The measurements involved employing the Polytec PSV-400 Scanning Laser Doppler

Vibrometer (SLDV) on the bottom surface of the plate, with dimensions of 500 ×
500 mm point grid. The measurements were conducted on a regular grid of 333 × 333

points at a sampling frequency of 512 kHz, and aligned with the edges of the plate. To

improve the signal-to-noise ratio, 10 averages were used. The scanning process took

approximately 1 hour and 40 minutes for each specimen. Subsequently, a median filter

with a window size of three was applied to every frame, and cubic interpolation was

employed to upsample all frames to (500 × 500) points.

During the testing phase with the synthetic dataset, the model was provided with a

consecutive sequence of identified frames (referred to as a “window of frames”) that

encapsulated the interactions of Lamb waves with the delamination, facilitating the

identification process.
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The same size of “window of frames” was used here as in numerical data, namely

(64), but in the case of experimental data, the delimitation initiation information is

unknown. Therefore, I slide the window over all input frames by shifting the window

one frame at a time and noted the IoU value for each sliding operation.

5.5.3 Single delamination

The first experimental case involved a CFRP specimen with a single delamination,

created artificially by a Teflon insert of a thickness 250 µm. The complete specifications

of this CFRP specimen are the same as in the numerical simulations, as described in

section 4.1. The Teflon insert was square in shape and inserted during the specimen’s

manufacturing, providing knowledge about its shape and location. Consequently, the

ground truth was prepared manually to accurately depict the location, shape, and size

of the artificial delamination. The configuration of the experimental case for the single

delamination arrangement is shown in Fig. 5.6.

Figure 5.6: Experimental case of single delamination arrangement.

Figure 5.7a shows the GT image corresponding to the artificial delamination’s loca-

tion, shape and size. The number of full wavefield frames in this case is 256 frames.

Figure 5.7b shows the delamination prediction for the proposed model, and the highest

IoU achieved is (0.53) for a window of frames from (35 − 99).

Furthermore, the percentage area error metric (ϵ) was equal to 41.78%. Therefore, the
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delamination was detected and located, but its size was was not identified correctly,

with the mentioned error. The predictions were highest for the group of frames cor-

responding to the first interaction of the GWs with the delamination. Accordingly,

such frames contain the most valuable feature patterns regarding delamination. Fur-

(a) GT of Teflon insert (b) IoU = 0.53

Figure 5.7: Experimental case: single delamination of Teflon insert. (a) GT, (b) predictions of
the proposed model.

thermore, this behaviour can be depicted in Fig. 5.8, which shows the IoU values

with respect to the predicted outputs as I slide the window over all input frames from

the starting frame till the end. Since there are 256 frames of full wavefield in this

damage case, there are 192 frames of windows and has 192 consecutive predictions.

Furthermore, in Fig. 5.8a, three places for the sliding window was selected. The first

place depicted in a dark blue star shown in Fig. 5.8b represents a frames of window

(72 − 136), which correspond to the initial interaction of GWs with the delamination.

The second place, depicted in the pink pentagon shape in Fig. 5.8b, represents a frames

of window (129 − 193) that correspond to the GWs reflected from the edges, where a

drop in the IoU values can be noticed, as these frames have fewer damage features.

The third place, depicted by a green circle in Fig. 5.8b represents a frames of window

(192− 256) corresponding to the interaction of the GWs reflected from the edges with

the delamination. As it can be seen, the value of IoU increases again as the valuable

feature patterns regarding delamination start to appear. The predicted outputs of the

proposed model regarding the dark blue star, pink pentagon, and the green circle are

shown in Fig. 5.9.

Additionally, for the experimental cases, I applied the root mean square (RMS) ac-

cording to Eq. 5.4 for all N predicted outputs Ŷ regarding all frames of windows to
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(a) IoU for the sliding window centered at consecutive frames.

(b) Corresponding frames of guided waves.

Figure 5.8: IoU corresponding to a sliding window of frames (Teflon insert-single delamination).

create the damage map.

RMS =

√√√√ 1

N

N∑
k=1

Ŷ 2, (5.4)

to separate damaged and undamaged classes from the RMS images, a binary threshold

with a value 0.5 is applied, as shown in Fig. 5.10a. The threshold level was selected

to limit the influence of noise while highlighting the damage. Figure 5.10b displays

the RMS image for the experimental case of a single delamination predicted by the

proposed model. The calculated IoU value for the case of the single delamination was

(0.46).

Table 5.3 presents the evaluation metric for the proposed model, regarding the exper-

imental case of single delamination shown in Fig. 5.10. As shown in Table 5.3, the
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Figure 5.9: Predictions of the proposed model at different window places (Teflon insert-single
delamination).

actual (A) and predicted areas (Â) of delaminations were computed in [mm2] with

respect to each case, and the percentage area error (ϵ) was calculated.

Table 5.3: Evaluation metric for experimental case of single delamination.

Experimental case A [mm2] IoU Â [mm2] ϵ

Single delamination 255 0.46 319 41.78%

5.5.4 Multiple delaminations

In the second experimental case, I investigated three specimens of carbon/epoxy lam-

inate reinforced by stacking sequence of 16 layers of plain weave fabric as shown in

Fig. 5.11. Teflon inserts with a thickness of 250 µm were used to simulate the delam-

inations. The prepregs GG 205 P (fibres Toray FT 300–3K 200 tex) by G. Angeloni

and epoxy resin IMP503Z-HT by Impregnatex Compositi were used for the fabrication

of the specimen in the autoclave. The average thickness of the specimen was 3.9 mm.
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(a) RMS image of predicted output
(b) Thresholded RMS image of predicted out-
put (IoU = 0.46)

Figure 5.10: RMS and thresholded RMS images of predicted outputs; Teflon insert (single
delamination).

In Specimen II, three large artificial delaminations of elliptic shape were inserted in the

upper thickness quarter of the plate between the 4th and the 5th layer. The delamina-

tions were located at the same distance, equal to 150 mm from the centre of the plate.

For Specimen III, delaminations were inserted in the neutral plane of the plate between

8th layer and 9th layer. For Specimen IV, three small delaminations were inserted in

the middle of the thickness of the plate, and three large delaminations were inserted

at the lower quarter of the thickness of the plate between the 12th layer and 13th layer.

The details of Specimen II, III and IV are presented in Fig. 5.11.

Furthermore, the SLDV measurements were conducted from the bottom surface of the

plate. Consequently, Specimen II is the most difficult case, as the wave reflections from

delaminations were barely visible. For Specimens (II, III, and IV), 512 consecutive

frames were generated representing the full wavefield measurements in the plate. The

measurement parameters were the same as in the experiment with a single delamina-

tion.

Figure 5.12a shows the GT image of Specimen II. The predicted output of the proposed

model is shown in Fig. 5.12b in which the highest calculated IoU value of 0.15 is

achieved for the frames of window (167 − 231). Figure 5.12c shows the GT image

of Specimen III. The predicted output is shown in Fig. 5.12d in which the highest

calculated IoU value of 0.18 is achieved for frames of window (279 − 343).

Figure 5.12e shows the GT image of Specimen IV. This is assumed to be the largest

delaminations in the cross-sections because the full wavefield was acquired from the bot-

tom surface of the specimen. It is also to be noted that such a case with stacked delam-

66



Chapter 5. DL-based Delamination Identification

Figure 5.11: Experimental case of delamination arrangement.

inations in cross-sections was not modeled numerically (see Specimen IV in Fig. 5.11).

Although the model was not trained on such a scenario, the predictions were satisfac-

tory. The predicted output of the proposed model is illustrated in Fig. 5.12f in which

the highest calculated IoU value of 0.18 achieved for frames of window (235 − 299).
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(a) GT of Specimen II (b) IoU = 0.15

(c) GT of Specimen III (d) IoU = 0.18

(e) GT of Specimen IV (f) IoU = 0.18

Figure 5.12: Experimental cases of Specimens II, III, and IV. (Figures: (a), (c), and (e) corre-
spond to the GT of each Specimen. Figures: (b), (d) and (f) correspond to the predictions of
the proposed model).
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The RMS images depicting the damage maps of Specimen IV are shown in Fig. 5.13a for

the proposed model. Figure 5.13b shows the thresholded RMS image for the proposed

model, and the calculated value of IoU is (0.07). Furthermore, the mean percentage

area error (ϵ) with respect to the three delaminations (Specimen IV) for the proposed

model was equal to 79.41%.

(a) RMS image of the predicted output
(b) Thresholded RMS image of predicted
output (IoU = 0.07)

Figure 5.13: RMS and thresholded RMS images of predicted outputs - Specimen IV.

5.6 Conclusions

In this chapter, image segmentation and its applications in DL is briefly described.

Then the ConvLSTM architecture is elaborated. After that a novel DL pixel-wise

semantic segmentation-based methodology for delamination identification in composite

laminates was presented. This approach implements an end-to-end framework that

specializes in many-to-one sequence prediction to discern the location, size, and shape

of delaminations.

The proposed model is systematically trained on consecutive frames depicting the full

wavefield of Lamb wave propagation within CFRP plates. These frames capture the

interactions of Lamb waves with both delaminations and plate edges. The proposed

model is able to extract crucial damage-related features from these frames, enabling

accurate predictions.

To evaluate the performance of the proposed model, it was tested on a numerical test

set that had never been seen before. The results substantiated remarkable accuracy

in identifying delaminations. Furthermore, to evaluate its generalization capabilities,

the model was applied to various experimentally measured scenarios involving single
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and multiple delaminations simulated by Teflon inserts. The predictions of the model

in these cases were highly promising, especially in the challenging scenario of mul-

tiple delaminations, despite having been trained solely on single delamination cases.

This underlines the potential of the proposed model for accurately identifying multiple

delaminations in real-world applications.

A major limitation pertains to the developed DL model is that the material properties

of the inspected structure have to be approximately known to simulate the dataset for

training.

Other limitations are associated with the SLDV measurement technique, which is em-

ployed for full wavefield acquisition. SLDV measurements are stationary and time-

intensive, making them more suitable for non-destructive testing (NDT) rather than

structural health monitoring (SHM). Additionally, SLDV measurements necessitate

direct access to the inspected structure’s surface, which could require partial disas-

sembly of the structure. Nevertheless, advancements in laser technology may lead to

faster data acquisition in the future, possibly by scanning an array of points instead of

a single point or by reducing the number of points in the spatial grid while employing

compressive sensing techniques.
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DL-based super-resolution approach for
the reconstruction of full wavefields of

Lamb waves

6.1 Introduction

Recently, the use of SLDV in GW-based NDT/SHM has received much attention,

as elaborated in chapter 2 and section 3.8. The utilization of SLDV in GW-based

NDT/SHM typically involves the use of either a piezoelectric transducer or a pulse

laser for GW excitation, and SLDV for collecting measurements at various points on

the surface of the inspected structure in a scanning manner. While full wavefield mea-

surements obtained through SLDV offer valuable data, they are more time-consuming

than sparse measurements taken by an array of transducers. Consequently, they are

less suitable for continuous monitoring in SHM and are better suited for offline NDT

applications. In future, it can be anticipated that the development of laser arrays that

replace the single laser head used today will be able to reduce SLDV measurement

time. Further advancement in SLDV technology could enable SLDV measurements to

be collected on a low-resolution grid of points, and then the low-resolution full wavefield

data can be reconstructed to high-resolution.

Generally, two techniques are commonly used to reconstruct a high-resolution wave-

field from SLDV measurements taken on a low-resolution grid. These techniques are

compressive sensing (CS), and deep learning super resolution (DLSR).

CS was initially introduced in the field of statistics [206, 207], and is employed for effi-

cient signal and image acquisition, and reconstruction. It operates on the fundamental

assumption that a signal or image can be represented sparsely in another domain using

suitable bases like Fourier, wavelet, or cosine. In such bases, many coefficients are

close to or equal to zero, enabling the signal or image to be reconstructed from fewer
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samples than required by the Nyquist-Shannon sampling theorem. However, there is

no unique solution for estimating unmeasured data. Therefore, optimization meth-

ods that promote sparsity are employed to solve under-determined systems of linear

equations [208–210]. Additionally, a suitable sampling strategy is required. Due to its

ability of efficiently reconstruct signals and images from limited data, CS has widely

been applied in diverse fields like medical imaging, communication systems, seismology,

ultrasonic signal processing, and many more [211–217].

Mesnil and Ruzzene [214] focused on the reconstruction of a wavefield that includes the

interaction between Lamb waves and delamination. Their approach involved generat-

ing a compressive sensing matrix using analytical solutions. Nonetheless, this method

necessitated prior knowledge of the dispersion curves of Lamb waves propagating within

the analyzed plate. Perelli et al. [215] employed the warped frequency transform within

a compressive sensing framework to enhance damage localization. They employed both

wavelet transform and frequency warping techniques to create a sparse decomposition of

the dispersive signal. Di Ianni et al. [216] investigated various bases within the realm

of compressive sensing with the aim of minimizing the acquisition time required for

SLDV measurements. Similarly, in [217], a damage detection and localization method

based on compressive sensing was introduced. The authors provided evidence that sub-

stantial reductions in acquisition time were achievable without compromising detection

precision.

DLSR techniques are primarily utilized in the domain of images and videos, finding

significant applications in fields such as astronomy, medicine, satellite imaging, surveil-

lance, and security [218–220]. Advanced DL methods, including improved convolutional

neural networks and extensions of PixelCNN to generative adversarial networks, have

been extensively employed for tasks like image super-resolution (SR), and video SR.

However, these methods have not been widely explored for wavefield data depicting

propagating Lamb waves, except for certain instances where wavefield enhancement

served as a secondary step in SR, following traditional compressive sensing (CS) meth-

ods [221, 222].

This research work introduces a novel technique for reconstructing the full wavefield

of Lamb waves using spatially sparse SLDV measurements with resolutions lower than

the Nyquist wavelength (λN ). The Nyquist wavelength represents the shortest spatial

wavelength accurately recoverable from a wavefield by acquiring sequential observations

spaced at intervals of ∆x, where λN = 2∆x. The proposed approach provides an end-

to-end solution to the super-resolution (SR) challenge by employing a deep neural

network trained and evaluated on a synthetic dataset obtained through SLDV. In

contrast to other methods described in the literature that rely on CS theory [217] or

72



Chapter 6. DL-based Super-resolution Approach

combine CS theory with super-resolution convolutional neural networks to enhance

wavefield images [221, 222], the proposed approach exclusively utilizes DLSR.

This chapter demonstrates the efficacy of the proposed framework and compares it with

the traditional CS approach. In the next section, the basic methodology of the proposed

approach and the low-resolution dataset acquisition for this task is elaborated.

6.2 Methodology

The approach outlined in this chapter comprises three main stages: dataset prepara-

tion (modelling), training a deep neural network model, and prediction, as depicted

in Fig. 6.1. In the first stage, the time-domain spectral element method is employed

to simulate wave propagation within a plate containing a single delamination. This

simulation is repeated across various random sizes, shapes, and locations of delami-

nations, resulting in high-resolution (HR) animations depicting wave propagation for

each scenario. In the subsequent step, frames with delamination interactions are se-

lected and down-sampled to create low-resolution (LR) frames. In the second stage, the

DLSR model is trained to learn the mapping from LR frames to HR frames. Finally,

in the last stage, the model takes LR measurements acquired via SLDV as input and

generates HR frames as output. This process can be iterated for all available frames.

6.2.1 Low-resolution Dataset Acquisition

The original high-resolution dataset, elaborated in chapter 4 was resized to achieve a

frame shape of (512×512) pixels, aligning with the desired output dimensions for low-to-

high-resolution image reconstruction. Following the Nyquist theorem, which imposed

a maximum allowable distance between grid points of 19.5 mm, determined that in 2D

space, 73 Nyquist sampling points were needed along the edges of a (500 × 500) mm2

plate.

To construct the low-resolution training set, frames with a size of (32× 32) pixels were

generated by subsampling the high-resolution dataset. This subsampling was carried

out using bi-cubic interpolation, resulting in a compression rate of 19.2%. This rate

corresponds to a frame size that falls below the Nyquist sampling rate for a 2D frame.

More details regarding the calculation of Nyquist sampling points, and the application

of compressive sensing theory can be found in [223]. It is essential to emphasize that the

subsampling was performed solely in the spatial domain, as the time domain sampling

frequency remains unaltered in SLDV measurements.

Figure 6.2 illustrates three low-resolution frames along with their corresponding high-
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Figure 6.1: Flowchart of the proposed DLSR approach.

resolution counterparts at frame numbers 54, 86, and 150.

Furthermore, the SPGL1 compressive sensing algorithm [210], and Fourier basis were

employed for the comparison purpose with the predictions of the proposed DLSR model.

6.3 DLSR approach for image super-resolution
reconstruction

For the purpose of reconstruction of full wavefields of Lamb waves, I developed a

comprehensive DL-based single image super-resolution (SISR) model.
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(a) LR frame (b) HR frame

(c) LR frame (d) HR frame

(e) LR frame (f) HR frame

Figure 6.2: Low-resolution and High-resolution frames at different time steps: (a) and (b) at
Nf = 54, (c) and (d) at Nf = 86, and (e) and (f) at Nf = 150.

The goal of SISR is to produce a high-resolution (HR) image that is visually appealing,

using its degraded low-resolution (LR) measurement. It is worth noting that I selected

128 consecutive frames for each simulated case, commencing from the initial interaction

between the propagating wave and the delamination, i.e. the size of fw is set into 128

here. This approach helped reduce computational complexity during training. Further,

the dataset splitting is being performed according to section 4.3.

6.3.1 The proposed DLSR model

Figure 6.3 illustrates the architecture of the proposed DLSR model. It begins with

an initial input in low-resolution. Subsequently, a convolutional layer is employed
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to extract shallow-level features from the original LR input. Following this, it uses

a Residual Dense Network (RDN), which was specifically designed as a solution for

SISR challenges, as discussed in [219]. RDN aims to address the lack of utilization of

hierarchical features that are extracted from the original LR images. To tackle this

issue, the authors introduced the concept of Residual Dense Blocks (RDBs), which

effectively utilize all hierarchical features derived from various convolutional layers.

Figure 6.3: The architecture of the proposed DLSR model.

As shown in Fig. 6.3, 8 residual dense blocks right after the first convolutional layer are

applied. In each of the RDBs, two convolution layers followed by batch normalizations

are applied and at the end, in each RDB an elementwise summation is applied. After

the RDBs, a convolution layer, batch normalization, and an elementwise summation

are applied consequently. A skip connection is also used before the RDBs to the

elementwise summation and after the RDBs. Once the features are learned by the

model in lower resolution form, now it was needed to Up-Sample the input from the

low resolution (32 × 32) to high resolution (512 × 512) frames, I applied four Up-

Sampling Net (UPNet) layers. Each UPNet layer is composed of a convolution layer

followed by a pixel shuffle layer [224]. The pixel shuffle technique involves a sub-pixel

convolution operation that reshapes the input tensor by rearranging the elements from

(h×w× c.r2) to (rh× rw× c), where h represents the height, w is width, c is the total

number of channels, and r is the up-scaling factor. The dimension at (c.r2) represents

the number of channels (or feature maps) in the output HR image. It is r2 times larger

than the number of channels in the LR image. Here, the up-scaling factor is set to 2,

which means that the size of input image is doubled at each pixel shuffle layer. The

sub-pixel convolution layer comprises of a general convolutional operation and pixel

rearrangement, and combines each pixel on multiple-channel feature maps into one
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(r × r) square area in the output image. This implies that each pixel on feature maps

is equal to the sub-pixel on the generated output image. Finally, the last convolutional

layer has one filter of size (1×1) which produces one output channel, resulting in an HR

grey image. It should also be noted that at each of the convolutional layer, a nonlinear

activation function rectified linear unit (ReLU) is applied except the last convolutional

layer on which a sigmoid activation function is applied.

6.3.2 The Development Environment

For the development of the proposed DLSR model, Python Anaconda Jupyter Note-

book, with Python version 3.7 was used. Further, the Keras API [204] version (2.0.0)

running on top of TensorFlow version (2.4.0) was utilized. The GPU used for this task

was GeForce RTX 2080 Ti composed of 16 GB of memory.

6.3.3 Evaluation Metrics

For evaluating the performance of the proposed model, two evaluation metrics, peak

signal-to-noise ratio (PSNR), and Pearson correlation coefficient (Pearson CC) were

utilized. The PSNR quantifies the maximum potential power of a signal and the power

of the noise that affects the quality of its representation and is expressed mathematically

in Eq. 6.1:

PSNR = 20 log10
L√

MSE
, (6.1)

where L denotes the highest degree of variation present in the input image. The MSE

used in Eq. 6.1 stands for mean squared error, which represents the discrepancy between

the predicted output and the relevant ground truth. The calculation of the MSE is

shown in Eq. 6.2:

MSE =
1

m ∗ n
∑
m,n

(
Y(m,n) − Ŷ(m,n)

)2
, (6.2)

where m and n represent the number of rows and columns in the input images, Y(m,n)

is the ground truth value, and Ŷ(m,n) is the predicted value.

Pearson CC is a metric that calculates the linear relationship between two sets or of

variables, x (which represents the ground truth values) and y (which represents the

predicted values). The mathematical formula for computing Pearson CC is shown in

Eq. 6.3:
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rxy =

∑n
k=1 (xk − x̄) (yk − ȳ)√∑n

k=1 (xk − x̄)2
√∑n

k=1 (yk − ȳ)2
, (6.3)

where rxy represents the Pearson CC, n represents the number of data points in a sam-

ple, and xk and yk denote the values corresponding to the ground truth and predicted

values, respectively, for each data point. Moreover, x̄ denotes the mean value of the

sample, while ȳ represents the mean value of the predicted values. The values of rxy

fall within the range of −1 to +1. A value of 0 indicates that there is no relation

between the samples and the predicted values. A value greater than 0 indicates that

there is a positive relationship between the samples and the predicted data, whereas,

a value less than 0 represents a negative relationship between them.

6.3.4 Hyperparameters tuning and DL model training

To enhance the PSNR value and minimize the loss of the proposed DLSR model, the

Adam optimizer [205] was employed. The detailed training configurations and values

of the hyperparameters are provided in Table 6.1.

Table 6.1: Configuration of the training process of the proposed DLSR model.

Hyperparameter Value

Loss function MSE (L2 norm)

Learning rate 3e-4

Batch size 4

Number of epochs 131

Early stopping 30 epochs

Since there is no simple approach to select the best parameters for training a DL model,

a trial-and-error approach was employed. The value of the regularization technique,

early stopping was set to 30 epochs, and was evaluated on validation PSNR, which

means during the DL model training process, if the value of PSNR on validation data

is not increasing for consecutive 30 epochs, the model will stop training, and will save

the model with the highest value of PSNR on the validation data. The training process

of the proposed DLSR model is shown in Fig. 6.4.

During the training process of the proposed model, it achieved the highest PSNR values

at 101th epoch on training and validation data as 48 dB and 47.7 dB, respectively. The

Pearson CC values of the proposed model at the same epoch on training and the

validation data were noted as 0.999, and 0.998, respectively.
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Figure 6.4: Illustration of the proposed DLSR model training.

6.4 Results and discussions

In this section, the retrieval of high-resolution frames from low-resolution ones using

numerical test data from 95 different cases are demonstrated. Further, the predictions

of the DLSR and CS approach are also compared.

6.4.1 Evaluation of DLSR model on test data

The mean PSNR value was 45.5 dB, and the mean Pearson CC value was 0.991 on all of

the test data. Figure 6.5 illustrates the results of the reconstruction of high-resolution

(HR) frames for a numerical test case using the developed DLSR model. It represents

the recovery of three different HR frames at different time steps with frame numbers

Nf = 111, 133, and 168, respectively, from the test data, which were not shown to

the model during training. Figures 6.5a, 6.5d, and 6.5g depict the input to the DLSR

model in the LR form. Figures 6.5b, 6.5e, and 6.5h show the reference HR frame, which

serve as the ground truth for the predicted frames shown in Fig. 6.5c, 6.5f, and 6.5i,

respectively. The PSNR value for the predicted frame in Fig. 6.5c is 47.5 dB, while

for Fig. 6.5f, the PSNR value is 46.8 dB, and for Fig. 6.5i, the PSNR value is 47.1 dB.

The Pearson CC values for all of the mentioned frames are 0.998, 0.996, and 0.998,

respectively.
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(a) LR frame (b) HR frame (c) Predicted frame

(d) LR frame (e) HR frame (f) Predicted frame

(g) LR frame (h) HR frame (i) Predicted frame

Figure 6.5: Reconstruction of three different frames with DLSR model for frames Nf =
111, 133, and 168, respectively.

6.4.2 Comparison of DLSR model with compressive sensing

A traditional compressive sensing (CS) approach was employed as a reference to recon-

struct the wavefield, using different numbers of points. The CS approach was applied

with varying points along with the reference frame and the prediction from the DLSR

model, as shown in Fig. 6.6.

In particular, the comparison between the reference wavefield reconstructed using both

the CS and DLSR model for frame number 110 is elaborated. The rectangular box

in all of the frames in Fig. 6.6 denotes the region with the most prominent delami-

nation reflection. Figure 6.6a presents the reference frame, which serves as input for

both the CS approach and the DLSR model reconstruction process. Figure 6.6b, 6.6c,

and 6.6d illustrate the CS approach reconstructions with 1024, 3000, and 4000 points,

respectively.

As expected, the accuracy of HR frame recovery diminishes as the number of points

decreases in the CS method. Conversely, Fig. 6.5e showcases the reconstructed HR
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(a) Reference

(b) CS: 1024 points (c) CS: 3000 points

(d) CS: 4000 points (e) DLSR prediction

Figure 6.6: Comparison of reference wavefield with reconstructed one by CS and DLSR model.

frame achieved by the DLSR model. The proposed DLSR model successfully recovers

the high-resolution frame using only 1024 points, equivalent to 19.2% of the Nyquist

sampling rate. It is crucial to highlight that when the point count is 1024, the CS algo-

rithm struggles in the delamination region, while the DLSR model excels in accurately

reconstructing the high-resolution frame.

6.5 Conclusions

In this chapter, a DL approach for the reconstruction of full wavefields of GWs is

proposed. The generated large synthetic dataset resembling full wavefields of GWs

was used. The process of creating a low-resolution dataset from the high-resolution

synthetic dataset is explained. The compression rate used in the DLSR model was

19.2% of the Nyquist interval. The evaluation of the proposed DLSR model on test data

is elaborated, and then the DLSR model is compared with the conventional compressive

sensing (CS). It was found out that the DL model outperformed CS in reconstructing

high-resolution of full wavefield frames from low-resolution data. The DLSR model

provides better reconstruction of the full wavefields, especially in areas of delamination

identification. Additionally, DLSR approaches can significantly improve the speed of

data acquisition by the SLDV.
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Chapter 7

DL-based approach for the simulation of
full wavefield for delamination

identification

7.1 Introduction

One possible solution to reduce the acquisition time of full wavefields of Lamb waves is

to obtain Lamb waves in a low-resolution format and subsequently apply compressive

sensing (CS), potentially enhanced by deep learning (DL) methods [222], such as the

end-to-end DL-based super-resolution technique described in chapter 6.

However, when dealing with scenarios where only spatially sparse data is accessible,

for instance when an array of sensors is deployed on the structure, applying damage

identification methods originally designed for full wavefields is not straightforward. In

such cases, inverse procedures are required, demanding efficient techniques for solv-

ing wave equations. Addressing numerical modeling of ultrasonic GW propagation in

solid materials with discontinuities like damage is a challenging endeavor, requiring fine

discretization and being computationally intensive. Even methods like the p-version

of the finite element method (p-FEM)[225], iso-geometric analysis (IGA)[226], spec-

tral cell method (SCM)[227], or the time-domain spectral element method (SEM)[228]

eventually prove inadequate in terms of efficiency. Executing the objective function for

each damage case scenario utilizing the forward solver becomes unfeasible.

An alternative approach is leveraging a DL-based surrogate model. Such models serves

as a means to generate full wavefield data or time series that emulate the signals cap-

tured by an array of sensors. Essentially, a surrogate model mimics the behavior of the

simulation model, replacing time-consuming forward simulations with approximated

solutions.
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Typically, when training DL models, streamlined neural network (NN) architectures

have been favored, coupled with curated input data. This approach aims to compel

the DL model to autonomously acquire relevant features from the input, a process

often referred to as feature engineering. However, delving into feature engineering is

a meticulous task, demanding domain-specific knowledge and a substantial investment

of time. Furthermore, the nuances of feature engineering tend to vary across different

data types, complicating the establishment of universally applicable techniques.

An effective alternative to traditional feature extraction lies in the form of autoencoders-

neural networks designed to autonomously learn features from unlabeled data through

unsupervised learning techniques. This intrinsic capability obviates the need for exten-

sive feature engineering efforts [229, 230]. An autoencoder comprises two key compo-

nents: an encoder that maps inputs to a desired latent space and a decoder that adeptly

translates the latent space back to the original input domain. By leveraging carefully

curated training data, autoencoders can generate a latent representation, eliminating

the requirement for labor-intensive feature engineering.

It is worth noting that conventional autoencoders may not effectively capture spa-

tial features, such as those found in images, or sequential information when dealing

with dynamic data, such as time-series forecasting. To address this limitation in cap-

turing spatial features, CNN-based autoencoders are recommended, while RNN-based

autoencoders are typically employed for learning features from time-series data. Deep

CNN-based autoencoders (DCAEs), in particular, excel at extracting spatial features

from image-based inputs. However, they might fall short when handling sequences of

images, especially in scenarios involving full wavefield data with numerous sequential

frames or images for each delamination scenario. In such situations, ConvLSTM [195]

is employed, for more details about the working procedure and architecture of ConvL-

STM (refer to section 5.3).

DCAE-based surrogate modeling approaches have been applied in several studies [231–

233]. In the work by Jo et al. [231], a DCAE framework was developed to extract

latent features from spatial properties. They employed their framework for adaptive

surrogate estimation, specifically focusing on carbon dioxide (CO2) sequestration in

heterogeneous deep saline aquifers. To reduce computational costs and retain spatial

characteristics, they combined DCAE with a fully-convolutional network. Nikolopou-

los et al. [232] introduced a non-intrusive DL-based surrogate modelling scheme for

predictive modelling of complex systems described by parametrized time-dependent

partial differential equations. Sharma et al. [233] proposed a DCAE-based surrogate

predictive model tailored for wave propagation studies. Their model was designed

to generate data for a one-dimensional rod of isotropic material, considering different
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crack locations and depths.

Zargar and Yuan [234] introduced a hybrid CNN-RNN framework to address chal-

lenges related to spatio-temporal information extraction in impact damage detection

problems. Recently, Peng et al. [235] proposed an encoding convolution long short-term

memory (encoding ConvLSTM) framework. Their approach aimed to create surrogate

structural models capable of handling spatio-temporal evolution. It was employed for

estimating structural spatio-temporal states and predicting dynamic responses under

future dynamic load conditions.

In this study, an innovative approach is employed to investigate the propagation of

GWs in composite structures with varying delamination instances. The key element

of this approach is the utilization of a deep ConvLSTM autoencoder-based surrogate

model. The primary objective of this model is to capture and comprehend the full

wavefield representation embedded within frames that depict delamination scenarios,

subsequently condensing this information into a compressed domain known as the latent

space.

During the training process, the encoder is presented with inputs encompassing both

reference frames (without delaminations) and explicit data detailing the characteristics

of the delaminations, such as their shape, size, and location. This process eliminates

the necessity for repetitive solving of the governing equations of the system, resulting

in significant time and computational cost savings compared to conventional forward

modeling techniques.

The novelty of this research lies in the implementation of ConvLSTM-based autoen-

coders for generating full wavefield data related to propagating GWs in composite

structures. Additionally, this DL model for full wavefield prediction is applied for the

first time in the context of the inverse problem of damage identification. To facilitate

this task, particle swarm optimization (PSO) is employed [236].

7.2 Methodology

The framework of the proposed inverse approach for damage identification is illustrated

in Fig. 7.1, consisting of three fundamental components: (i) dataset computation, (ii)

supervised learning, and (iii) the inverse method.

Acquiring a substantial experimental dataset for GW-based damage identification poses

significant challenges due to the need for multiple samples with various damage scenar-

ios, which can be expensive and impractical. To address this, an alternative approach

involves generating a numerical dataset using tools like a finite element solver. In this
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Figure 7.1: Flowchart of the proposed inverse method for damage identification.

research, the dataset, as detailed in chapter 4, was created using the time-domain spec-

tral element method [192], focusing primarily on delamination defects, which are par-

ticularly critical in composite laminates like carbon fiber-reinforced polymers (CFRP).

This dataset served as the foundation for training the DL model. The concept involved

feeding the DL model with binary images, where white pixels represented the delami-

nation region, and black pixels represented the healthy region for specific delamination

cases. Once the model was trained, it could replace computationally intensive forward

solvers like p-FEM or SEM in the inverse procedure as an efficient surrogate model.

It is important to highlight that the PSO algorithm was chosen for the inverse method

due to its effectiveness in handling objective functions that are more versatile, accom-

modating various formulations beyond strict algebraic constructs. However, alternative

algorithms can also be applied. In this process, the initial particles, represented by bi-

nary images in Fig. 7.1, serve as inputs. These are input into the trained DL model,

which subsequently predicts the full wavefield of propagating waves for corresponding

delamination scenarios. Simultaneously, full wavefield measurements are collected. An

objective function is constructed based on the mean square error (MSE) calculation

between the predicted and measured wavefields. The positions and velocities of parti-

cles are then iteratively updated until the termination criterion is satisfied. Eventually,

the identified delamination is visualized based on the best match.

It is also important to emphasize that the proposed method was validated only on

synthetic data. The subsequent sections provide a comprehensive breakdown of each
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constituent element within the proposed method.

7.3 Dataset computation and preprocessing

The spatial size of the full wavefield data, elaborated in chapter 4, was further down-

sampled to (256×256) for the purpose of reducing the computational complexity. This

(256 × 256) size ensures the preservation of a symmetrical shape throughout the en-

coding and decoding phases of the model. Further, the data augmentation technique

(described in section 3.5.2) is applied to increase the generalization capabilities of the

proposed DL model. In this research work, the dataset is composed of 475 delamina-

tion cases, which is not enough for a targeted DL model to perform well. Therefore, all

the images in the 475 delamination cases are flipped diagonally, horizontally, and ver-

tically in order to enhance the performance of the proposed DL model. Consequently,

the total dataset after data augmentation is now composed of 1900 (475 × 4 = 1900)

delamination cases. The input frame size (fw) for the proposed DL model is chosen

to be 32 frames. This less size for the (fw) was opted due to memory limitations.

Furthermore, the dataset splitting is being performed according to section 4.3.

7.4 The proposed DL-based Surrogate Model

In this research work, I developed a novel deep ConvLSTM autoencoder-based surro-

gate model utilising full wavefield frames of Lamb wave propagation for the purpose

of data generation for delamination identification in thin plates made of composite

materials. The developed DL model takes as an input 32 frames without delamination

(reference frames) representing the full wavefield and the delamination information of

the respective delamination case in the form of binary image for the purpose of produc-

ing a full wavefield propagation of Lamb waves through space and time (3D matrix).

The most important aspect of the DL model is the prediction of the interaction of

Lamb waves with the delamination so that the delamination location, shape, and size

can be estimated. The complete flowchart of the proposed DL model is presented in

Fig. 7.2.

The training and evaluation process of the proposed model can be summarized in the

following three steps:

1. Feature extraction: Since there are no labels available for the dataset, the

available dataset is composed of delamination cases. So the first task was to

extract features from all of the delamination cases, and then use these features
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Figure 7.2: The flowchart of the proposed DL model.

as labels in the second step during model training. Therefore, in this step, the

encoder and decoder parts of the proposed model are jointly trained, allowing the

decoder part to be used separately for full wavefield predictions. During this step,

the features are extracted with very minimal reconstruction error in a compressed

form, matching the dimensions of the latent space.

2. Model training: In this step, the actual model training is carried out. Full

wavefield frames in a plate without delamination, along with the binary image of

the respective delamination case, are fed into the encoder part of the DL model

for training. The features extracted in the first step from encoder part are used

as labels in this step, as shown in Fig. 7.2.

3. Evaluation of the proposed DL model on unseen data: In this stage, both

of the pre-trained models (the pre-trained decoder from step 1 and pre-trained

encoder from step 2) are utilised for the prediction of full wavefield frames on

unseen data. During this step, the model takes reference frames with delamina-
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tion information and produces the output as the full wavefield frames containing

interaction of Lamb waves with delamination.

Figure 7.3: The architecture of the proposed ConvLSTM-based surrogate model.

The proposed ConvLSTM autoencoder model takes 32 frames as input, concatenated

with a binary image that is replicated 32 times (see Fig. 7.2). The DL model consists of

six ConvLSTM layers. The first ConvLSTM layer has 32 filters, the second and third

layer has 192 filters, the fourth layer has 32 filters, and the last two ConvLSTM layers

has 192 filters. The kernel size of the ConvLSTM layers is set to (3×3) with a stride of

(1). Padding is set to “same”, which ensures the output size matches the input size in

the case of stride 1. Furthermore, a tanh (the hyperbolic tangent) activation function

is used within the ConvLSTM layers, which outputs values in a range between (−1

and 1). Maxpooling and upsampling were applied at each ConvLSTM layer to reduce

the size of features and for reconstruction purposes, respectively. Moreover, a batch

normalization technique is applied at each of the ConvLSTM layers. At the final output

layer, a 2D convolutional layer is followed by a sigmoid activation function.

It should also be noted that no skip-connections were used so that it is easier to train

the encoder and decoder separately.

7.4.1 The Development Environment

For the development of the proposed DL-based surrogate model, Python Anaconda

Jupyter Notebook with Python version 3.8 was used. Additionally, the Keras API [204]

version (2.0.5), running on top of TensorFlow version (2.5.0), was utilized. The GPU

used for this task was Tesla V100 GPU from NVIDIA, composed of 32 GB of memory.
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7.4.2 Evaluation Metrics

For evaluating the performance of the proposed models, two evaluation metrics, peak

signal-to-noise ratio (PSNR), and Pearson correlation coefficient (Pearson CC) were

utilized. The PSNR quantifies the maximum potential power of a signal and the power

of the noise that affects the quality of its representation. Both the PSRN and Pearson

CC evaluation metrics are explained in section 6.3.3.

7.4.3 Hyperparameters tuning and DL model training

The Adam optimizerr [205] was employed for back-propagation, and MSE was used as

a loss function for both training steps. The detailed training configurations and values

of the hyperparameters are provided in Table 7.1.

Table 7.1: Configuration of the training process of the ConvLSTM-based surrogate model.

Hyperparameter Value

Loss function MSE (L2 norm)

Learning rate 3e-4

Batch size 2

Number of epochs 142

Early stopping 30 epochs

Since there is no simple approach to select the best parameters for training a DL model,

a trial-and-error approach was employed. The value of the regularization technique,

early stopping, was set into 30. It was evaluated based on validation PSNR, which

means that during the DL model training process, if the PSNR value on the validation

data does not increase for consecutive 30 epochs, the model will stop training and save

the model with the highest PSNR value on the validation data.

The training process of the proposed ConvLSTM-based surrogate model is illustrated

in Fig. 7.4. The model achieved the highest PSRN value at the 112th epoch on training

and validation data, reaching 24.6 dB and 23.7 dB, respectively. The Pearson CC

values of the proposed model for the same epoch on training and the validation data

were recorded as 0.99, and 0.97, respectively.

7.5 Inverse method for damage identification

A global-best Particle Swarm Optimization (PSO) algorithm implemented in Python

was used in the optimization process [237]. It takes a set of candidate solutions and

aims to find the best solution using a position-velocity update method. It uses a

star-topology where each particle is attracted to the best-performing particle. The

89



Chapter 7. DL-based Approach for the Simulation of Full Wavefield

Figure 7.4: Illustration of the proposed ConvLSTM-based surrogate model training.

algorithm follows two basic steps:

� the position update:

xi(t + 1) = xi(t) + vi(t + 1), (7.1)

� and the velocity update:

vij(t + 1) = w vij(t) + c1 r1j(t) [yij(t) − xij(t)] + c2 r2j(t) [ŷj(t) − xij(t)], (7.2)

where r are random numbers, yij is the particle’s best-known position, ŷj is the swarm’s

best known position, c1 is the cognitive parameter, c2 is the social parameter, and w

is the inertia parameter that controls the swarm’s movement. Cognitive and social

parameters control the particle’s behaviour given two choices: (i) to follow its personal

best or (ii) to follow the swarm’s global best position. Overall, this dictates if the

swarm is explorative or exploitative in nature. In this research work, the following

parameters were used: c1 = c2 = 0.3 and w = 0.8. Good convergence was achieved for

these set of parameters settings, rendering further parameter tuning was unnecessary.

The following decision variables were used in the PSO:

� delamination coordinates (xc, yc) with bounds [0 mm, 500 m],

� delamination elliptic shape represented by semi-major and semi-minor axis a, b

with bounds [5 mm, 20 mm],

� delamination rotation angle α with bounds [0◦, 180◦].
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Based on decision variables, binary images of (256×256) pixels are generated (one image

per particle - see Fig. 7.1). In these images, ones (white pixels) represent delamination,

whereas zeros (black pixels) represent healthy area.

The most important component of the proposed inverse method is the surrogate DL

model described in section 7.4. The trained DL model is used for ultrafast full wavefield

prediction, as illustrated in Fig. 7.1. For a single particle and its respective binary

image, the DL model is evaluated 7 times for 32 consecutive frames giving an output

of 224 frames. These predicted frames are compared to “measured” frames using the

MSE metric, which is utilised in the objective function. However, for the sake of result

reproducibility and compatibility with the available dataset, the synthetic data was

used instead of measured data (acquired by SLDV).

For each PSO iteration, particles are updated according to Eqs. (7.1)-(7.2). The termi-

nation criterion was assumed as 100 iterations but it was observed that the objective

function value converges much faster. In the final step, the best matching wavefields

indicate coordinates, semi-major, semi-minor axis and the rotation angle of the elliptic-

shaped delamination. These parameters are used for a visual representation of the

best-matched delamination in the form of binary image, compared against the ground

truth (see also Fig. 7.1).

As an evaluation metric for assessing the accuracy of the identified delamination, the

Intersection over Union (IoU) was used, which is explained in section 5.4.3.

7.6 Results and discussions

7.6.1 Evaluation of the surrogate DL model

In this section, I present the evaluation of the proposed DL model based on numerical

test data of 95 delamination cases representing the frames of full wavefield propagation,

which were not shown in the proposed DL model during training. The proposed DL

model was evaluated using numerical test data to demonstrate its capability to predict

the interaction of Lamb waves with delaminations of various locations, shapes and

sizes.

Three different representative cases were selected from the numerical dataset to demon-

strate the performance of the developed DL model. Figures 7.5, 7.6, and 7.7 shows

three different frames from three selected numerical test cases. Frames in the left col-

umn represent the labels against which the prediction of the proposed DL model are

compared. Frames on the right column represent the predictions by the DL model.

Particular frames were selected to illustrate the interaction of propagating Lamb waves
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with the delamination, namely 10th, 20th and 30th frames after the interaction with the

delamination. These frame numbers were determined based on the A0 mode velocity

and modelled delamination location.

As can be seen in the first scenario (Fig 7.5), the delamination occurred at the upper-

left side of the plate. In the second scenario (Fig 7.6), the delamination occurred at the

top-left of the plate, while in the third scenario (Fig 7.7) the delamination occurred at

the top-centre of the plate.

In all presented cases (Figs. 7.5–7.7), the changes in wave velocity due to delamination

are well reproduced by the DL model. The wave reflections from the delamination

are very well predicted in Fig. 7.6, whereas in some cases and frames, the reflection

patterns differ between the label and the DL prediction. For comparison, see Fig. 7.7e

to Fig. 7.7f. It should be noted that these reflections have much smaller amplitudes

than the main wavefront, and the proposed DL model is cannot accurately reproduce

all the detailed intricacies of Lamb wave reflections. Achieving further improvement

might require a more complex DL model. Nevertheless, testing results are satisfactory

and very promising.
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(a) Label, 10th frame (b) Prediction, 10th frame

(c) Label, 20th frame (d) Prediction, 20th frame

(e) Label, 30th frame (f) Prediction, 30th frame

Figure 7.5: First scenario: comparison of predicted frames with the label frames at 10th, 20th,
and 30th frame after the interaction with delamination.
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(a) Label, 10th frame (b) Prediction, 10th frame

(c) Label, 20th frame (d) Prediction, 20th frame

(e) Label, 30th frame (f) Prediction, 30th frame

Figure 7.6: Second scenario: comparison of predicted frames with the label frames at 10th,
20th, and 30th frame after the interaction with delamination.
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(a) Label, 10th frame (b) Prediction, 10th frame

(c) Label, 20th frame (d) Prediction, 20th frame

(e) Label, 30th frame (f) Prediction, 30th frame

Figure 7.7: Third scenario: comparison of predicted frames with the label frames at 10th, 20th,
and 30th frame after the interaction with delamination.

95



Chapter 7. DL-based Approach for the Simulation of Full Wavefield

From all three scenarios, it can be confirmed that the proposed DL-based surrogate

model has accurately reconstructed the full wavefield containing delamination with

minimal error. Furthermore, the PSNR and Pearson CC values of all these three

scenarios are shown in Table 7.2. The mean PSNR value was 21.8 dB, and the mean

Pearson CC value was 0.98 on all of the test data. It confirms that the predictions by

the proposed DL model are accurate.

Table 7.2: DL surrogate model evaluation metrics for three numerical cases

scenario PSNR Pearson CC

first
10th frame 23.3 dB 0.96
20th frame 23.4 dB 0.98
30th frame 23.7 dB 0.98

second
10th frame 21.4 dB 0.96
20th frame 22.1 dB 0.98
30th frame 22.6 dB 0.98

third
10th frame 21.8 dB 0.97
20th frame 22.1 dB 0.98
30th frame 22.3 dB 0.99

7.6.2 Delamination identification results

The delamination identification results obtained using PSO aided by the DL-based

surrogate model are presented in Fig. 7.8. Several runs were performed due to the

meta-heuristic nature of the PSO algorithm, and the results from two runs are selected

for illustration purposes. The following cases were selected, namely case 1 (Fig. 7.8a,

Fig. 7.8b), case 2 (Fig. 7.8c, Fig. 7.8d), and case 3 (Fig. 7.8e, Fig. 7.8f), where the

damage identification difficulty can be ranked from highest to lowest. The most chal-

lenging case is case 1, in which the delamination is in the corner of the plate. For

case 2, the delamination is located very close to the top edge of the plate, where edge

reflections can overshadow reflections from delamination. The delamination in case 3

is quite large and far away from the plate’s edges, making it relatively easy to detect.

Actually, the damage identification difficulty level is reflected in the obtained IoU

values, which are shown in the zoomed-in regions around delamination in Fig. 7.8. On

average, the lowest IoU values were obtained for case 1.

The visualisation of damage identification results is presented in such a way that the

delamination ground truth is shown in green colour, the DL model’s prediction in red,

and the intersection of the two is represented by colour mixing, resulting in a yellow

colour. Therefore, the more yellow pixels, the greater the overlap of delaminations and,
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consequently, the higher the accuracy.

It should be noted that despite low IoU values in certain cases, the identification

algorithm performed remarkably well because delamination was localised accurately

for each scenario.

(a) Case 1, run 1 (b) Case 1, run 2

(c) Case 2, run 1 (d) Case 2, run 2

(e) Case 3, run 1 (f) Case 3, run 2

Figure 7.8: Delamination identification results; green - ground truth, red - prediction, yellow -
intersection.

The delamination identification results in terms of IoU values are presented in Table 7.3,

with results from chapter 5 included for comparison. The method introduced in chap-

ter 5 is completely different from the one presented here but relies on the same dataset.

However, the frame size was larger, namely (512× 512) pixels versus (256× 256) pixels

here, providing better resolution of damage identification.

Although, according to Table 7.3, the current results are not as good as compared to

the previous approach (as of chapter 5), the advantage of the proposed method is that

it can be easily extended to the cases in which only a limited number of signals are
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available in comparison to full wavefield data. This is of great significance in practical

applications for structural health monitoring where only signals from sensor locations

are available.

It should also be stressed that the complexity of the proposed DL model and dataset

size used for training are constrained by the memory of a single Nvidia Tesla V100 GPU

(32 GB memory), which was available. Undoubtedly, the surrogate DL model can be

improved by using a larger number of frames in the sequence of ConvLSTM layers. This

is expected to result in improved damage identification with a more accurate surrogate

DL model.

Table 7.3: Damage identification evaluation metrics for three numerical cases

case number IoU

current chapter 5

1
run 1 0.25

0.74run 2 0.41
run 3 0.34

2
run 1 0.84

0.76run 2 0.32
run 3 0.34

3
run 1 0.78

0.88run 2 0.60
run 3 0.85

7.7 Conclusions

In this chapter, a novel DL-based surrogate model is presented. The developed model

adopts the architecture of an autoencoder-decoder in conjunction with ConvLSTM for

predicting a full wavefield containing interacting Lamb waves with delamination. In

the proposed model, the encoder and decoder parts are jointly trained on a synthetic

dataset comprising frames that contain wave patterns of delamination reflections and

changes in the wavefront due to delamination. Subsequently, the encoder is trained

separately on reference data without delamination. The delamination information in

the form of binary images is also provided alongside the reference images to the encoder

part for training the encoder, resulting in the final prediction of frames propagating

in the plate with delamination. In simple words, this DL-based surrogate model takes

full wavefield frames of propagating waves in a healthy plate as input and predicts full

wavefields in a plate containing a single delamination.

The proposed DL model has demonstrated excellent performance, as evidenced by the
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results. The proposed DL model is helpful for predicting full wavefield data from the

time of excitation initiation to the desired simulation time. The predicted wavefield

from the proposed architecture can be used for inverse problems in NDT (shown here)

and SHM (possibly in future). The wavefield prediction by the proposed DL model is

ultrafast, making it suitable for objective functions that require multiple evaluations,

which would be unfeasible with conventional forward solvers like those based on p-FEM

or SEM.
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Chapter 8

Conclusions and Future work

This chapter encompasses the conclusions drawn from the research undertaken in this

dissertation. Moreover, it delves into potential avenues for future research building

upon the current work.

8.1 Conclusions

GW-based NDT/SHM systems have gained prominence due to their capacity for reli-

able inspection of structures. These systems often rely on data-driven methods, which

necessitate substantial datasets derived from ongoing structural monitoring efforts. In

recent times, non-contact systems have garnered attention for damage detection and

localization in NDT/SHM applications. They utilize SLDV to capture full wavefields

of elastic wave propagation initiated by a fixed piezoelectric transducer. The primary

objective of this dissertation was to explore the viability of employing artificial neu-

ral networks-based approaches for identifying delaminations in composite laminated

structures. Consequently, this dissertation introduces a novel approach, featuring the

utilization of full wavefields from Lamb wave propagation in composite laminates in

conjunction with deep learning techniques for delamination identification. The full

wavefields generated by elastic wave propagation in composite laminates encapsulate

extensive, intricate information about plate discontinuities like delaminations or edges.

This rich information can serve as the foundation for training DL models to conduct

damage identification via an end-to-end methodology. DL approaches enable the use of

raw registered data without the necessity of conventional feature engineering, extrac-

tion, and classification. Thus, they offer an end-to-end structure that autonomously

uncovers latent features within high-dimensional input data. Although DL typically

demands more time for training, it compensates with rapid and efficient testing, out-

pacing conventional signal processing and machine learning methods.
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The primary findings of this dissertation can be summarized as follows:

� Introduction of an innovative ANNs-based method that employs an end-to-end

approach for many-to-one sequence prediction, allows the identification of de-

lamination location, size, and shape. This model can simultaneously process a

sequence of a predefined number of full wavefield frames to detect and estimate

delaminations. Consequently, utilizing a specific number of full wavefield frames

proves sufficient for accurate delamination identification. The model exhibited

promising results and displayed adaptability by effectively detecting multiple de-

laminations in real-world scenarios, even though it had been initially trained

solely on single delamination scenarios.

� Full wavefield acquisition via SLDV is time consuming. The necessity to en-

hance the signal-to-noise ratio (SNR) through averaging procedure, often requir-

ing several hours of automatic measurements. As a solution, a DL model for

super-resolution image reconstruction was developed, capable of accurately re-

covering high-resolution full wavefield frames from low-resolution SLDV data.

Comparative analysis against the traditional Compressive Sensing (CS) tech-

nique revealed the DL model’s superiority in reconstructing full wavefield frames.

Furthermore, when applied to experimentally obtained full wavefield frames via

SLDV, the DLSR model demonstrated its ability to generalize. Consequently, it

is noteworthy that DL-based super-resolution frame reconstruction outperforms

conventional CS techniques. The outputs of the DLSR approach can be feed into

the proposed ConvLSTM approach for the purpose of delamination identification.

� This study adopts a novel DL-based methodology to delve into the intricacies

of GW propagation within composite structures composed of various delamina-

tion scenarios. Central to this strategy lies in the utilization of an advanced

deep ConvLSTM autoencoder-based surrogate model, meticulously crafted to

produce extensive full wavefield data simulating the characteristics of propagat-

ing GWs within these composite structures. Furthermore, this state-of-the-art

DL model, utilized to predict full wavefield patterns, establishes its groundbreak-

ing application within the realm of the inverse problem associated with damage

identification.

8.2 Future work

The research conducted in this study primarily involved training DL models designed

for the detection and localization of delamination in CFRP structures. This founda-

101



Chapter 8. Conclusions and Future work

tional work can serve as a stepping stone for identifying various other types of defects

within CFRP structures. It is important to note that the dataset created for train-

ing the models in this research required approximately three months of computational

effort. However, given the advancements in computational power, generating such a

dataset can be accomplished within a reasonable timeframe. Consequently, this dataset

can be employed to train DL models capable of simultaneously detecting and localizing

different types of defects in an end-to-end manner, potentially enhancing the perfor-

mance of the developed models.

To further improve the performance of the proposed models, training on experimental

data could be considered, allowing them to learn more intricate patterns. It is worth

mentioning that the studies presented here are focused on a single type of signal at

a carrier frequency of 50 kHz. As a progression, a new dataset could be generated

with a higher excitation frequency or a broadband frequency signal. Additionally,

the proposed approaches have demonstrated feasibility for delamination identification.

Therefore, the next logical step would be to collect a comprehensive experimental

dataset comprising full wavefields from structures with stiffeners, rivets, as well as

basic plate-like structures. Such experimental data, as opposed to naive numerical

datasets, would significantly enhance the performance of the proposed models.

Furthermore, the model developed for super-resolution image reconstruction in this

research was trained using a low-resolution dataset with a compression ratio equivalent

to 19.2% of the Nyquist sampling interval. This approach can be extended to various

compression ratios, offering opportunities for further exploration.

In this research work, only a specific number of frames (fw) were selected to feed into

the proposed DL models (due to limited GPU memory availability). In the future,

the more GPU memory could be acquired so that all of the 512 frames of the full

wavefield could be inputted into the DL models. Further, due to higher GPU memory,

more dense DL models can also be implemented. The surrogate model would also be

capable of training with (512 × 512) pixels instead of (256 × 256) pixels, resulting in

improved performance of the surrogate modelling, and will be more efficient for the

inverse problems.

In this research work, most of the convolutional neural networks are employed. In the

future, various other DL approaches, specifically physics-informed neural networks,

generative adversarial networks, graph neural networks, and transformer-based net-

works can be applied, particularity for the reconstruction of full wavefield and simula-

tion of full wavefield tasks.
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248.

[79] H. Guo, G. Xiao, N. Mrad, and J. Yao. “Fiber optic sensors for structural health
monitoring of air platforms”. In: Sensors 11.4 (2011), pp. 3687–3705.

[80] N. Takeda, Y. Okabe, J. Kuwahara, S. Kojima, and T. Ogisu. “Development
of smart composite structures with small-diameter fiber Bragg grating sensors
for damage detection: Quantitative evaluation of delamination length in CFRP
laminates using Lamb wave sensing”. In: Composites science and technology
65.15-16 (2005), pp. 2575–2587.

[81] H. Tsuda. “Ultrasound and damage detection in CFRP using fiber Bragg grating
sensors”. In: Composites science and technology 66.5 (2006), pp. 676–683.

[82] D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski. “Lamb wave detec-
tion and source location using fiber Bragg grating rosettes”. In: Smart Struc-
tures and Materials 2003: Smart Sensor Technology and Measurement Systems.
Vol. 5050. International Society for Optics and Photonics. 2003, pp. 117–127.

[83] D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski. “Structural damage
location with fiber Bragg grating rosettes and Lamb waves”. In: Structural health
monitoring 6.4 (2007), pp. 299–308.

[84] H.-N. Li, D.-S. Li, and G.-B. Song. “Recent applications of fiber optic sensors to
health monitoring in civil engineering”. In: Engineering structures 26.11 (2004),
pp. 1647–1657.

[85] Q. Zhen and W. Piyawattanamatha. “New endoscopic imaging technology based
on MEMS sensors and actuators”. In: Micromachines 8.7 (2017). issn: 2072666X.
doi: 10.3390/mi8070210.

[86] E. S. Cochran, J. F. Lawrence, A. Kaiser, B. Fry, A. Chung, and C. Christensen.
“Comparison between low-cost and traditional MEMS accelerometers: a case
study from the M7. 1 Darfield, New Zealand, aftershock deployment”. In: Annals
of Geophysics 54.6 (2012).

[87] F.-K. Chang. Structural health monitoring 2013: a roadmap to intelligent struc-
tures: proceedings of the ninth international workshop on structural health mon-
itoring, september 10–12, 2013. DEStech Publications, Inc, 2013.

[88] H. Saboonchi, D. Ozevin, and M. Kabir. “MEMS sensor fusion: Acoustic emis-
sion and strain”. In: Sensors and Actuators, A: Physical 247 (2016), pp. 566–

109

https://doi.org/10.1016/j.engstruct.2004.05.018
https://doi.org/10.1088/0964-1726/15/4/005
https://doi.org/10.1088/0964-1726/15/4/005
https://doi.org/10.3390/mi8070210


References/Bibliography

578. issn: 09244247. doi: 10.1016/j.sna.2016.05.014. url: http://dx.doi.
org/10.1016/j.sna.2016.05.014.

[89] A. Dixit and S. Bhalla. “Prognosis of fatigue and impact induced damage in con-
crete using embedded piezo-transducers”. In: Sensors and Actuators, A: Physical
274 (2018), pp. 116–131. issn: 09244247. doi: 10.1016/j.sna.2018.03.005.
url: https://doi.org/10.1016/j.sna.2018.03.005.
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