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Abstract

Composite materials are widely adopted in aerospace and other high-performance applica-
tions due to their lightweight characteristics and excellent mechanical properties. Currently,
adhesive bonding has become the preferred alternative to traditional riveted joints for assem-
bling composite structures. However, the complexity of manufacturing processes, combined
with varying operational conditions, often leads to internal defects such as disbonds and voids,
which significantly increase the risk of structural failure. As a result, despite its advantages
in maintaining load transfer continuity and preserving fibre integrity, adhesive bonding still
faces acceptance challenges compared to conventional mechanical fastening methods.

Currently, various non-destructive testing and structural health monitoring-based tech-
niques are employed to inspect composite structures and assess their remaining service life,
with the aim of enhancing detection accuracy and extending operational longevity. However,
due to the extreme sensitivity of traditional elastic wave methods to the microstructure of
the actually bonded region and noise interference, achieving effective detection remains a
significant challenge. In recent years, the emergence of multi-model ensemble techniques
has helped overcome these issues. Hybrid models based on digital twins integrate signal
processing techniques with deep learning, addressing the challenges associated with fault
feature extraction in traditional methods while providing a neural network-based approach
for predicting remaining useful life.

The primary objective of this dissertation is to develop a model for damage diagnosis
and remaining useful life prediction of bonded composite materials. It also highlights
the feasibility of using guided waves for experimental measurements and assessing the
crack length within adhesion. Compared to single neural network structures, this study
adopts a multi-model collaborative approach to address the issues associated with classic
neural network-based remaining useful life prediction, such as single-value outputs and the
reliance on Bayesian networks for uncertainty quantification. Adopting the ensemble fracture
mechanics model effectively simulates the nonlinear characteristics of crack propagation,
which is not constrained by limitations related to the insufficient initial sample size or a short
prediction horizon. Furthermore, a dropout-based approximation of the Bayesian approach is

used, eliminating the need to assign probability distributions to hidden layer nodes within



vii

the neural network, thereby reducing model complexity. The prediction output consists
of confidence intervals, improving the reliability of the results. Compared with traditional
Bayesian networks, repeated experimental trials demonstrate an accuracy improvement of
16.43%. Additionally, a data augmentation and segmentation method is proposed to address
the initial-stage deviation problem in remaining useful life prediction. Experimental results
show that initial-stage prediction errors can be effectively reduced after data adjustments.
Chapter 5 presents the results of all models developed in this dissertation, alongside a
comparative analysis with currently established mainstream approaches.

The integration of multi-model digital twin technology aims to resolve the issues of
Bayesian dependence in prediction processes and the single-value nature of remaining useful
life predictions. This research further provides technical support for the broader application

of adhesively bonded composite materials across different fields.
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Chapter 1

Introduction

1.1 Introduction

In recent years, driven by the growing imperative to achieve unprecedented levels of eco-
efficiency, the aircraft industry has been striving for ultra-lightweight structures. To this
goal, composites are increasingly replacing conventional metal due to their high tensile
stiffness and low weight. This trend is mirrored across the aerospace, automotive, wind
energy, and marine sectors, where combining different composite materials enhances the
strength-to-weight ratio.

However, joint design practices have not kept pace with this transition. At present,
composite structures are still commonly assembled using mechanical fasteners. This ap-
proach not only introduces a considerable weight penalty but also compromises structural
integrity by cutting through load-bearing fibres and disrupting the load path. The limited
adoption of adhesive joints can be attributed to several factors: insufficient understanding
of critical manufacturing parameters, difficulties in non-destructive testing (NDT), gaps in
structural health monitoring (SHM) methodologies, and the absence of a robust framework
for diagnosis-prognosis [1, 2]. Compared to conventional rivet fastening methods, adhesive
bonding offers advantages including the reduced weight and the preservation of the inherent
mechanical properties of the materials, making it particularly well-suited to composites
[3-5].

Moreover, the integrity of the bonded interface is an essential factor that must be consid-
ered when employing such structures. Challenges such as surface preparation, fatigue life
prediction, material durability, and the demand for reliable SHM and remaining useful life
(RUL) assessment systems continue to hinder the widespread application of bonded joints.
Failures in bonded structures may occur in various forms, with common types including

adhesive failure and adherend damage. Numerous studies have demonstrated that early-stage
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damage in these systems is often repairable. This has prompted extensive experimental and
analytical efforts to ensure that early damage can be detected and repaired before progressing
to an irreparable state.

Consequently, this doctoral dissertation aims to develop an integrated diagnostic—prognostic
framework capable of accurately identifying damage in the adhesive zone and predicting the

RUL of the structure following damage initiation.

1.2 Research question and objectives

Current research on SHM and RUL prediction of adhesively bonded composite structures
primarily relies on conventional fracture mechanics (FM) and data-driven techniques. Both
approaches face notable limitations. The FM models often struggle to predict RUL accurately
due to insufficient experimental data for calibration and their inability to quantify uncertainty.
Data-driven models often overlook the fatigue crack growth mechanisms. Sole reliance on
input training data fails to represent the nonlinear nature of crack propagation, which restricts
the capacity of data-driven models to capture and predict complex fracture behaviours
effectively.

Although the hybrid model techniques of neural networks (NN) with Bayesian statistical
methods have improved the feasibility of RUL prediction, they still lack the incorporation
of FM required to model the nonlinear progression of crack growth. This shortcoming
ultimately leads to reduced accuracy, particularly in the high-cycle fatigue failure.

To address these limitations, this dissertation proposes a digital twin hybrid model
(DTHM) with three key features:

* adeep learning (DL) hybrid model integrating FM theories;
* using guided waves (GW) to quantify the damage extent;

* utilising hybrid model with dropout to approximately replace Bayesian neural network
(BNN) to predict RUL and quantify uncertainty.

1.3 Thesis of the work

Combining FM with machine learning (ML) methods via digital twin (DT) technology
enables damage diagnosis and RUL prognosis with uncertainty quantification for the bonding
zones of adhesively bonded composite structures.
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1.4 Methodology

The research methodology of this dissertation is centred on multidisciplinary model fusion.
The hierarchical framework, referred to in this dissertation as a diagnostic—prognostic model,
comprises three core components: damage extent quantification model, fatigue crack growth
calculation, and an RUL prognosis model. The detailed methodologies are introduced as
follows:

* The crack growth calculation module combines FM with the extended finite element
method (XFEM). Simulation data generated from Abaqus, COMSOL, and FE-life are
incorporated into a DT database to support the training of ML model;

* The experimental module constitutes the physical system and consists of two com-
ponents: damage quantification experiments based on the GW and fatigue life char-
acterisation. The purpose of this module is to quantify damage extent, and obtain

experimental damage data and corresponding end-of-life (EoL) values;

* The RUL prognosis model, built on the DT concept, processes and integrates data
from both simulated and physical models. It predicts RUL using DL frameworks and

platforms, developed by TensorFlow and implemented via the Anaconda environment.

This methodology integrates experimental procedures, numerical simulations, and ad-
vanced computing techniques in a coordinated manner, thereby enabling comprehensive

health assessment of adhesively bonded composite structures.

1.5 Dissertation contributions

This dissertation builds upon the current state-of-the-art and has the potential to significantly
improve the RUL prediction results of adhesive bonding composites, aiming to bring them as
close as possible to actual life. In the process of damage detection and quantification, the
hybrid model includes an innovative damage extent quantification method by using GW. In
the simulation process, this dissertation presents a DTHM that integrates the XFEM and FM,
which enables the calculation of nonlinear fatigue crack growth. Additionally, this research
introduces an approximate approach to replace BNN by employing dropout and Monte Carlo
(MC) sampling in ML to quantify uncertainty in the RUL prognosis process.

First, the study introduces a convolutional neural network (CNN)-long short-term memory
(LSTM) hybrid networks with dropout and MC sampling to predict RUL and quantify
uncertainty. This method does not require frequent modifications to hyperparameters and
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quantifies uncertainty in the network, as dropout is capable of producing probabilistic
outcomes. This approach simplifies the process instead of using BNN to quantify uncertainty
and avoid increased running time and complex node hyperparameters.

Subsequently, in order to accurately simulate the nonlinear process of crack propagation,
this dissertation collects simulation data from the crack growth solver. The solver combined
with the RUL prediction model forms a DTHM, which effectively solves the problem
of difficulty in predicting nonlinear crack propagation using NN. Compared to existing
RUL prediction methods, this approach offers significant advantages in both efficiency and
accuracy.

In summary, this dissertation sheds light on the modelling that combines FM with
intelligent algorithms to advance the application of SHM and RUL prognosis in bonded
composite structures, thereby encouraging wider acceptance of such structures.

1.6 Dissertation organization

The first Chapter discusses the methodology and key contributions of the research field.
This is to help readers better understand the structure of this dissertation. The rest of the
dissertation is organized as follows:

Chapter 2 presents a literature review relevant to this research, with a primary focus on
the technologies and models used in SHM for damage diagnosis and RUL prognosis of the
adhesively bonded composite materials.

Chapter 3 introduces the data-driven RUL prediction method, providing a detailed de-
scription of the NN commonly employed in the RUL prediction process.

Chapter 4 builds upon Chapter 3 by presenting the methodology of this study, specifically
a diagnosis-prognosis framework based on DT technology.

Chapter 5 demonstrates the RUL prediction results using a single lap joint (SLJ) as a
specimen. Meanwhile, the proposed approach is compared with published methods, including
BNN and CNN, to highlight the advantages of the proposed DTHM methods.

Chapter 6 presents the conclusions of this dissertation and discusses potential future
research directions that build upon the current work.



Chapter 2

Literature review

2.1 Introduction

This chapter reviews the major studies and methodologies developed for predicting damage
and RUL in the adhesive zone of bonded composite structures. The existing literature
primarily focuses on three research directions: SHM technologies based on GW, RUL
prediction models for bonded structures, and the application of DT technology in this context.
The structure of this chapter is outlined in Fig. 2.1.

| I

| Structural health monitoring Damage diagnosis experiment |

I_)a.m age | |
diagnosis | |
Chapter 2.2 : Guided waves Signal processing :
b e e e e e e e e e e e ————— -

N - - |

m—b RUL prognosis

Chapter 2 Chapter 2.3 Uncertainty quantification Prognosis result assessment

: Data driven techniques :
| |
| |
| I

I

m_>
Digital twin for SHM system

Chapter 2.4

Figure 2.1 The content structure of the literature review.
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Additionally, this chapter not only reviews the state-of-the-art but also critically examines
the limitations and research gaps within existing studies. The objective is to provide a
comprehensive overview of both experimental and numerical investigations related to damage

detection and RUL prognosis in adhesively bonded composite structures.

2.2 Damage diagnosis by using guided waves

Compared to conventional riveted connections, adhesive bonding of composite materials
offers a practical solution for broadening their applications [6], while mitigating structural
damage and reducing stress concentrations. However, damage detection and structural health
evaluation in bonded composite assemblies remain key challenges that limit progress in the
field. This section outlines experimental and numerical approaches for structural damage
diagnosis using GW, with a focus on damage quantification. The discussion is organised
into three sub-sections: GW-based detection principles, experimental procedures, and signal

processing techniques.

2.2.1 Structural health monitoring

SHM refers to technologies used to detect, locate, and quantify changes in material structures
resulting from damage or degradation. As a multidisciplinary field, SHM integrates concepts
from automation, mechanics, mechanical, and civil engineering. It is generally classified into
contact and non-contact methods [7-9]. Common contact methods include GW, acoustic
emission (AE), and vibration-based approaches. Non-contact techniques are typically based
on acoustics, laser technologies, and visual inspection [10, 11]. Regardless of classification,
the primary aim of SHM methods is to detect damage and ensure long-term structural
performance. Current research is particularly focused on applications in wind turbines,
aircraft, and bridges [3, 6, 12—14].

The majority of SHM techniques rely on the excitation and measurement of signals using
specially designed actuators and sensors, with structural health status assessed through the
analysis of damage-related features. Although specific requirements may vary across appli-
cation domains, the objective remains consistent: to obtain comprehensive structural health
information. In certain practical scenarios, damage detection must operate continuously and
under all conditions, referred to as active SHM technology [15]. Additionally, employing
embedded sensors such as optical fiber systems integrated into composite materials is also a
popular SHM technology [16]. These diverse scenarios underscore the adaptability of SHM
in enabling full-field and large-scale damage detection [17]. As a result, SHM technologies
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have been progressively adopted across various disciplines. A summary of representative

damage detection methods and SHM techniques is presented in Tab. 2.1 [17].

Table 2.1 Commonly used NDT and SHM techniques.

Technique Application Advantages Limitations

GW Cracks; Impact; GW enable Dispersive nature and
Delamination; long-distance, multiple modes in
Hole; Broken cost-effective single frequency; lower
fibre; Debonding; monitoring of large capacity to detect small
Adhesive failures; areas, and are useful for size damage.
Fatigue damage.  detecting internal

damage in thin
materials.

AE Cracks; AE offers real-time AE technology is
Delamination; monitoring, enabling sensitive to noise,
Debonding; Fibre the detection of damage which can interfere with
breakage; Impact; within structures with the characteristic signal.
Matrix micro high sensitivity. Need a precision signal
damage; processing method to
Corrosion; analyse the signal.
Fatigue damage.

Vibration  Cracks; Vibration monitoring It is sensitive to
Delamination; can identify changes in  environmental noise,
Corrosion; vibration patterns, and it requires complex

Stiffness changes;
Debonding;
Buckling; Loose

connection.

indicating early-stage
damage. This method
allows for real-time,
continuous monitoring,
effectively detecting
issues like rotating

machinery.

data analysis with
specific signal
processing algorithms.
It is difficult to
precisely locate damage
and often necessitates

baseline data.
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Table 2.1 (continued)

Technique Application Advantages Limitations
Thermo- Translaminar Thermal imaging is a It is limited to detecting
graphy cracks; non-contact method surface or near-surface
Inclusions; that can be used to damage, and its
Laminated quickly detect damage  accuracy may be
failures; on large surfaces and to affected by ambient
Delamination; accurately locate temperature and
Debonding; damage. lighting. And the
Impact; Fatigue detection instrument is
damage; expensive.
Corrosion.
Electrical  Cracks; Resistive technology is  Requires direct contact
Resistance  Delamination; effective at detecting with the structure and is
Debonding; changes in conductivity limited to conductive
Corrosion; due to damage and is materials. Its sensitivity
Fatigue damage.  sensitive to small depends on factors such
damage. as fiber volume and
electrode location, as
well as ambient
temperature.
Electro- Cracks; Utilizes high-frequency Requires direct contact
mechanical Delamination; structural vibrations to  with the structure and is
Impedance Debonding; detect local stiffness influenced by
Corrosion; changes, offering high  environmental

Fatigue damage.

sensitivity to incipient

damage.

conditions such as
temperature and

humidity.
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Table 2.1 (continued)

Technique Application Advantages Limitations
Laser Surface damage; Laser scanning is a Sensitive to
scanning Cracks; non-contact and highly  environmental
Corrosion; accurate technique that  conditions. Equipment
Impact. enables remote sensing, is expensive and
making it suitable for requires careful
delicate or calibration.
hard-to-reach
structures.
Visual Surface damage.  Optical inspection Limited to detecting
inspection using cameras is surface damage, and its

non-contact, provides
visual documentation,

and is easy to

effectiveness can be
compromised by poor

lighting conditions,

implement for surface obstructions, or the size

damage detection and  of the damage.

monitoring.

SHM techniques can generally be categorised into five levels based on the research
objectives [18]. Typically, SHM involves using a network of advanced sensing and actuation
elements integrated within the structure to obtain information related to the structural health
status (first level). Advanced signal processing methods are then employed to extract
characteristic parameters and locate the damage (second level). Using information from
the detection samples, the extent of the damage is determined (third level). This process
ultimately leads to an assessment of the structure performance (fourth level) and RUL
prognosis of the damaged structure (fifth level). The specific SHM development roadmap is
illustrated in Fig. 2.2.

This dissertation adopts GW-based SHM techniques to quantify the damage extent. In
view of its integration with a subsequent framework for RUL prediction, the research aligns
with the fifth level of SHM, as illustrated in Fig. 2.2. The proposed framework is designed
not only to assess structural integrity but also to predict the RUL, thereby contributing to the
broader goal of ensuring long-term structural safety and durability.
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Figure 2.2 An overview of the technical level of SHM technology and the roadmap for implementing
advanced SHM 1in this dissertation.
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2.2.2 Guided waves

GW are formed when acoustic waves reflect and propagate repeatedly between discontinuous
interfaces, such as the upper and lower boundaries of a solid plate. They travel within
the waveguide at ultrasonic frequencies and are accompanied by complex dispersion. In a
homogeneous medium, shear waves and longitudinal waves propagate independently as body
waves in different directions. Fig. 2.3 illustrates the propagation characteristics of GW in a

plate structure, where mode conversion occurs due to elastic interactions within the structure.

Figure 2.3 Shear waves, longitudinal waves and mixed waves in structures.

The thickness of the thin plate is significantly smaller than its length and width and is
comparable to the wavelength. Consequently, ultrasonic waves undergo continuous reflection
between the upper and lower surfaces, leading to mode conversion between longitudinal and
shear waves. Part of the wave energy propagates as an in-plane horizontal shear wave, while
the remainder forms out-of-plane Lamb waves. The propagation modes and characteristics
of both wave types are depicted in Fig. 2.4.

It is assumed that there is a certain initial excitation source in the infinite plate to excite
the GW signal, and the signal can be detected at any location in the plate. The time-space
wave-field Y (¢,x) when GW reaches the position x can be calculated as follows [19]:

Y(t,0) = Ae T KON = / ™ P (@)el @) 4 @
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Figure 2.4 Wave propagation behaviour of SH and Lamb waves (a), and illustration of wave modes(b).

where k() is the wavenumber of GW, A is the amplitude of GW and F(w) is the FFT
of an input signal f(¢). The frequency spectrum signal of Y (z,x) is Y (@, x), which can be
calculated as follows:

Y(0,x) = F(®)e @)X, 2.2)

Based on the equations presented above, the nonlinear relationship exists between
wavenumber and frequency during GW propagation, primarily due to the presence of expo-
nential terms. As a result, dispersion inevitably occurs during wave propagation. According
to the principles of elastic mechanics, the dispersion equation for GW propagating in an
isotropic material can be expressed as follows:

2 +1
tanha [ 4oBK )2} ’ 2.3)

tanhff | (K2 — B2

where & denotes the thickness of homogeneous media. K denotes the wavenumber and can
be calculated by K = C—“; o and B are calculated by the following equations:

(2.4)
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B=\/5 K% (2.5)

where the C,, , C, and Cy respectively represent the phase, shear wave, and longitudinal
wave velocities of GW. Fig. 2.5(a) presents the evolution of the phase velocity of GW during
propagation in carbon-fiber reinforced polymer (CFRP) as a function of frequency and
thickness product [13]. Additionally, tuning curves for GW propagation have been computed
under excitation with a 10 mm diameter piezoelectric transducer (PZT), demonstrating
amplitude attenuation of GW across various frequencies as shown in Fig. 2.5(b). The
normalized tuning coefficient (Normalized TC) is used to evaluate the efficiency of GW
excitation at different frequencies. It is obtained by normalizing the wave amplitude relative
to its maximum value. The excitation used in this study is a five-cycle tone burst signal with
a central frequency ranging from 50 to 300 kHz. The adherend is two 1 mm thick CFRPs,
and the adhesive is two-component epoxy resin.
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Figure 2.5 The group velocity and amplitude of GW propagating in CFRP thin plates change with
frequency: (a) normalized tuning coefficient (TC) as a function of frequency for GW in a 1 mm-thick
CFRP plate with a 10 mm PZT transducer.

There are various sensors for generating and receiving Lamb waves, such as PZT transduc-
ers [20, 21], while scanning laser Doppler vibrometery (SLDV) [22, 23] are also commonly
used for full wave-field measurement. If GW are excited using PZT actuators without
any signal pre-processing, multiple wave modes and dispersion effects will become more
pronounced as the propagation distance increases. The resulting signal exhibits complex
dispersion characteristics [24], making it difficult to intuitively extract damage information.
To avoid such issues in SHM introduced by the dispersive nature of GW, various methods
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for mode separation and dispersion compensation have been proposed [25-27]. Zeng et
al. [28] developed a dispersion-free restoration technique by applying pre-compensation
and post-compensation strategies to the excitation signal. Harley et al. [29] utilised a fre-
quency—wavenumber representation derived from GW propagation modelling and sparse
sampling theory, and addressed multi-path interference using an ¢;-norm optimisation frame-
work. Wang et al. [30] employed mode separation for dispersion compensation through
received signal processing. Kudela et al. [31] integrated dispersion compensation into a
phased array focusing algorithm, significantly improving imaging resolution. Cheng et
al. [32] proposed advanced techniques for localising damage in plate-like structures by
controlling GW propagation paths. In addition, Su et al. [33] introduced an SHM method-
ology that combines GW analysis with ML techniques to enable quantitative evaluation of
through-thickness cracks in plate structures. Blachowski et al. [34] used modal and ultrasonic
methods to detect bolt loosening in steel structures, showing that higher modes and proper
sensor placement are key to identifying connection damage.

These studies have addressed the limitations of GW application in damage detection from
three key perspectives: excitation, sensing, and signal processing. This dissertation focuses
on damage detection using GW, with particular emphasis on the methodologies employed
for damage diagnosis of adhesively bonded composite structures. The following sections

provide a detailed overview of these approaches.

2.2.3 Damage detection based on guided waves

The GW is an essential method for detecting structural damage. Subsection 2.2.2 explains
the principles of GW propagation and their modelling. GW propagation in solid structures
demonstrates complex elastic wave behavior, especially when encountering structural and
material discontinuities, such as boundaries, damage, or delamination. These discontinuities
can significantly influence wave propagation through reflection and scattering, as illustrated
in Fig. 2.6(a).

Two commonly used SHM techniques for damage detection using GW are the pitch—catch
and pulse—echo methods. The selection of an appropriate technique depends on the sensor
configuration and the specific testing conditions. In the pulse—echo approach, a single
sensor is used to both excite and receive GW. As the wave propagates through the structure,
encounters with reflective interfaces, e.g., crack or delamination, result in partial or full
reflection of the wave energy. These scattered signals are captured by the same sensor,
enabling the identification of structural irregularities.

In contrast, the pitch—catch method utilises two separate sensors: one for exciting the GW
and the other for receiving it after interaction with the specimen or any reflective interface.
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Fig. 2.6(b) presents a schematic illustration of both techniques, highlighting the interaction of
GW with various structural interfaces. The key distinction between these methods depends

on whether lies in the use of separate sensors for excitation and reception.
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Figure 2.6 Diagram of the experimental method for damage detection using GW: (a) Sensing and
actuating, (b) Pitch-catch and Pulse-echo.

The research on damage analysis of the adhesively bonded zone of composite structure
using GW is mainly carried out in a pitch-catch method. The use of a single PZT transducer
for both excitation and sensing in the pulse-echo method leads to rapid mode conversion,
which complicates damage analysis, especially in small-sized structures. Therefore, the
pitch-catch method is generally used by placing two PZTs on both sides of the bonding zone
to assess its health status.

In practical applications, cracks in adhesive joints are typically complex and nonlinear,
arising from stress concentrations and fatigue loading. Environmental conditions such as
temperature, humidity, and ultraviolet exposure further accelerate bond degradation. Addi-
tionally, GW propagation in composite structures is complicated by phenomena including
damage-induced scattering, boundary reflections, and mode conversions. These factors
collectively pose significant challenges for GW-based SHM systems. Therefore, developing
detection schemes tailored to specific damage characteristics is essential for improving
diagnostic accuracy in complex wavefields.

Recent studies have proposed various strategies to improve damage localisation and
quantification. For instance, phased array (PA) techniques have been extensively explored
in the SHM of large composite assemblies. Rocha et al. [35] proposed a GW-based SHM
strategy utilising PZT phased array systems to enhance the low signal-to-noise ratio typically
observed in conventional PZT network configurations. Yang et al. [36] developed a signal
processing framework based on the frequency response function, implementing a “single-
input, multiple-output” configuration to enhance PA performance. Xu et al. [37] introduced
a nonlinear Lamb wave PA approach for micro-damage imaging, utilising second harmonic
responses to detect closed fatigue cracks. This methodology proved particularly effective

in revealing localised acoustic nonlinearities associated with incipient damage. Yuan et
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al. [38] investigated the reverse-time migration imaging method for evaluating in-plane
damage, achieving precise imaging of damage parallel to a linear array. Ostachowicz et
al. [24, 39] explored sensor optimisation layouts and damage localisation of piezoelectric
sensors on flat plate-like structures, with tests conducted on aluminium alloy and carbon
fibre-epoxy composite specimen plates. Tavares et al. [40] proposed an integrated framework
that combined SLDV data and ML to identify the damage in composite structures. They
obtained the numerical simulation data by integrating finite element method (FEM) in the
hybrid methods, which enriches the damage detection methodologies in transfer learning.

Effective signal processing techniques are essential for extracting damage-related features
from recorded GW responses. Yu and Giurgiutiu [41] employed a non-uniform beamforming
method to achieve rapid full-field scanning and damage localisation in large-scale metallic
and composite plates. Yue et al. [42] proposed a GW imaging technique based on particle
swarm optimisation, using binary histograms of particle distributions for visualising damage.
Gruber et al. [43] introduced a time-reversal imaging method combined with multiple
signal classification (MUSIC) to analyse complex, multiply scattered wavefields, enabling
high-resolution imaging of multiple defects. Similarly, Wang et al. [44] developed a
digital time-reversal imaging approach within distributed sensor networks, offering effective
localisation and size estimation of structural damage. Sohn et al. [45] advanced a baseline-
free damage detection technique using enhanced time-reversal processing for composite
plates. More recently, Y. Yu et al. [46] developed a weighted delay-and-sum imaging
algorithm using a denoising autoencoder to extract salient features and suppress noise,
demonstrating strong robustness with limited input data. Luo et al. [47] proposed the hybrid
BNN model, which integrates probabilistic modelling and DL for Lamb wave-based damage
detection in composites. This approach improves noise tolerance and mitigates overfitting.
Yuan et al. [48] introduced an integrated MUSIC array method that combines impedance
curve filtering with co-cured PZT technology, significantly improving detection stability
in composite structures. Xu et al. [49] proposed a focused MUSIC algorithm based on
virtual time-reversal for baseline-free Lamb wave localisation in isotropic materials, and its
effectiveness was validated experimentally on aluminium plates.

The above studies summarise mainstream GW-based damage detection techniques, rang-
ing from conventional signal compensation schemes to more advanced methods incorporating
ML, DT, and hybrid modelling frameworks. These approaches reflect the evolution of SHM
methodologies, particularly in addressing the challenges of damage localisation and quantifi-

cation under complex structural conditions.
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2.3 Remaining useful life prognosis model

Currently, the RUL of composite structures is primarily predicted using ML approaches [50—
53]. The observed variability across studies is primarily caused by input data and network
architectures. Input data are influenced by detection methods and signal preprocessing
strategies [54]. Recent efforts have focused on enhancing fault recognition through PA
techniques to improve GW-based damage detection [36, 55]. This dissertation employs a
GW-based damage detection method, with preprocessing centred on waveform decomposition
and damage feature extraction, accounting for signal dispersion and multi-mode interference.
The advantage of this approach lies in its direct correlation with damage location, supported
by signal pre-compensation and post-processing techniques [28]. However, PA methods are
not well-suited to SLJ structures due to sensor placement constraints and spatial limitations
[39]. Therefore, a multi-sensor strategy [6] is adopted to analyse damage location based on
the time of flight (ToF) [56, 57]. For RUL prediction, most studies utilise NN, particularly
LSTM networks [58, 59], which are well-suited for time-series data due to their long-term
memory capabilities. However, LSTM models face limitations when handling highly complex
or long sequences. To address this, hybrid models have emerged, including LSTM-recurrent
neural network (RNN) [60], LSTM-CNN [61], and LSTM-—particle filter networks [62],
which improve robustness and feature representation. Optimised variants of LSTM have
shown promising results in processing time series [63], although most have been validated on
systems like lithium-ion batteries and C-MAPSS engines [64], offering limited applicability
to bonded composite structures.

The data-driven approach based on DL stands out as a highly effective method for
SHM and RUL prognosis [65-67]. DL models offer a distinct advantage in processing
extensive damage data and efficiently extracting damage features, making them particularly
suitable for tasks such as GW signal analysis. The adaptability of DL models in categorizing
diverse input data labels, coupled with their enhanced robustness relative to the CNN,
significantly augments their efficacy in RUL prediction. Additionally, these models can
effectively classify preprocessed data into various fault modes and accurately identify the
damage characteristics [68—71]. In particular, RNN or LSTM demonstrate effectiveness in
modelling time-dependent data and predicting future states, such as RUL and EoL. CNN
excels in processing spatial data, including failure image analysis, thereby offering significant
advantages for training with full-wavefield damage images. Additionally, ML models also
exhibit strong transferability, enabling knowledge gained from training on one composite
structure model to be effectively applied to predictions for other structures, as highlighted in
the literature [72, 73]. However, a single NN exhibits several drawbacks in the application
process of RUL prognosis. For instance, in the preprocessing of measured GW signals,
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NN models tend to be overly simplistic, lacking integration with the knowledge of damage
mechanics, and inadequate representation of crack propagation information in damaged areas.
Yuan F-G et al. [74] attempted to integrate GW technology, the cohesive zone method (CZM)
theory, and the Markov Chain Monte Carlo sampling theory to propose a comprehensive RUL
prediction framework for bonded metallic structures. This approach aimed to amalgamate
mechanics with data-driven techniques, generating probabilistic output results accompanied
by quantitative uncertainty. Stonski [75] used DL and digital image correlation to detect
cracks and measure strain in concrete crane beams, enabling non-destructive and accurate
condition assessment. Nazarko et al. [76] applied NN to process Lamb wave signals for
early damage detection in aluminium and composite materials, showing good performance
even with low-resolution data. Loutas et al. [52, 77] integrated the statistical method with
the data from the AE method to generate more accurate RUL prediction results. They
proposed a non-homogeneous hidden semi-Markov method to quantify uncertainty and
enhance the accuracy of the RUL predictions [78]. The aforementioned hybrid models are
based on the integration of ML techniques with probabilistic methods, and are essentially
data-driven approaches for RUL prediction. This represents a significant research direction
in RUL estimation. However, in recent years, another emerging approach is the use of
DT, which aims to enhance prediction accuracy by integrating data-driven insights with
physics-based modelling. DT-based methods offer significant advantages in handling large
datasets [68, 79-81], constructing physical models, and interacting with simulation models.
Currently, DT-based SHM and NDT primarily encompass two major aspects. The first
aspect involves using a 3D virtual-physical interaction model based on DT for multi-level
damage diagnosis of composite materials [82, 83]. The other involves employing a data
management information system based on the DT method to facilitate information interaction
and data processing with the physical model [84, 85]. DT-based research represents an
advancement over current data-driven models, offering increased complexity and adaptability
[86]. Meanwhile, this approach uses physical data to update simulation model parameters in
real time, making it particularly suitable for tasks such as damage diagnosis, RUL assessment,
and EoL prediction. In recent studies, efforts have been made to integrate dynamic sensor
data and physical models into a DT framework to enhance reliability prognosis for in-service
structures, thereby addressing uncertainties arising from both service loads and structural
variability. For example, the method proposed in [87] effectively captures cumulative crack
growth and extends the application of SHM to fatigue damage assessment in multilayer
composite structures. Similarly, the works in [88, 89] introduce a DT-driven fault diagnosis
strategy that integrates the Bernoulli equation with loss, control, and state parameters, forming

a comprehensive model for addressing compound failure scenarios in complex systems.
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FM provides a fundamental methodology for analysing fatigue crack growth. Classical
models such as the Paris law and its extended formulations are extensively used in engineering
to predict fatigue crack propagation and estimate RUL [10, 90]. Recent studies increasingly
apply data-driven methods to identify the parameters of the Paris law, thereby enabling
fatigue life prediction [15, 91-93]. However, acquiring high-quality data through fatigue
testing remains challenging and costly, posing limitations on the development of reliable
algorithms. To address this, researchers have integrated advanced sensing technologies with
data-driven approaches [94, 95].

While the quantitative RUL prediction method based on GW and BNN is practical and
accurate, it tends to overlook uncertain factors (uncertainty quantification) in the prediction
results. A new fatigue crack growth prediction method, combining a particle filtering
algorithm and GW, has been proposed to improve prediction accuracy [96], but determining
the optimal number of particle prognosis models for predicting fatigue crack growth remains
a problem. Therefore, more hybrid models are proposed to predict damage, such as multiple-
NN [97, 98], DL [99], DT [13, 82, 84]. The hybrid models proposed in these studies
effectively address the limitations of single-model approaches by achieving accurate and
stable RUL predictions, even when the experiments are repeated multiple times.

2.4 Structural health monitoring based on digital twin tech-

nology

DT is increasingly applied across industries such as civil infrastructure, construction, and
aerospace, functioning as an integrative platform for multi-model fusion. DT involves the
acquisition of digital data either through sensors or derived from the physical system, which
is then processed using specialised algorithms to enable remote monitoring, control, and
visualisation. The technology supports functions such as information exchange, simulation,
predictive modelling, and optimisation. In fields such as aerospace and civil engineering,
DT has already demonstrated substantial utility in applications including service life mon-
itoring, failure inspection, and disaster prevention and early warning systems [100-103].
Using extensive datasets generated through a measurement system, DT facilitates real-time
combination between measured data and simulation models. Throughout the entire SHM
lifecycle, this capability enables dynamic model correction, real-time condition assessment,
and predictive safety management, thus establishing a comprehensive system for continuous

monitoring, evaluation, and early warning.
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The primary function of DT technology in the context of SHM for adhesively bonded
composite materials is to serve as a comprehensive framework for failure analysis and
predictive maintenance. In contrast to expert systems or hybrid ML architectures, the DT
framework places a stronger emphasis on the integration of physical and virtual systems.
Conventional failure detection and RUL prediction methods are often constructed as inde-
pendent modules. For instance, experimental data are used to build training datasets for
virtual models, which subsequently perform specific prediction tasks. However, such systems
typically lack full integration, although the modules may interact during execution, there is
generally no dynamic feedback mechanism among them.

The emergence of DT has overcome the limitations of conventional modular systems
by facilitating the integration of physical and virtual domains. Through continuous syn-
chronisation, parameters derived from the physical system are dynamically updated within
the virtual environment to optimise overall system performance. For example, Vivek et
al. [104] proposed an ML -based DT framework, enhancing computational efficiency of
huge volume data. This approach employs linear dimensionality reduction algorithms and
NN to generate approximations of real-world signals. Milanoski et al. [105] introduced a
multi-level damage diagnosis strategy based on a data-informative DT model, combining
field data acquired via fibre Bragg grating sensors with finite element analysis (FEA). Also,
Kim et al. [106] developed a physics-based DT model update method and a twin-crack
identification technique for assessing fatigue damage in riveted lap joints. Their method
incorporates Lamb waves to capture the uncertainty associated with crack propagation paths.
In another study, Edwards et al. [107] established a DT system for damage evaluation and
life prediction in welded structures, integrating sensor-based measurements with big data
analytics. This system offers an innovative route for damage quantification while enhancing
the accuracy of RUL prediction. Furthermore, Zhao et al. [12] proposed a DT model that
integrates multiple SHM technologies, employing a semi-analytical FEM in conjunction
with AE techniques to localise damage in wind turbine blades. Rather than relying on
data-driven ML approaches, their method establishes explicit analytical correlations between
the measurement and simulation, thereby improving the accuracy of damage localisation.

The integration of DT technology with SHM not only facilitates diagnostic tasks, such as
damage quantification and crack identification, but also plays a vital role in predicting the
RUL based on experimental data. The use of DL techniques is currently the most common
approach to achieving the prediction process. Based on DT technology, predictive networks
can learn from both experimental and simulation data, thereby enhancing the accuracy
of prediction results. Ye et al. [108] employed DT technology for structural component

inspection and damage prediction in the bridge inspection process. Hielscher et al. [99]



2.4 Structural health monitoring based on digital twin technology 21

utilised DT techniques to visualise strain outputs from fibre optic sensors, comparing and
evaluating structural responses over time to provide references for optimising maintenance
strategies. Seshadri et al. [14] combined experimental and model data to manage the full
lifecycle of damaged aircraft blades, including damage diagnosis and lifespan prediction.
Zhu et al. [109] updated parameters through structural response data monitoring to achieve
monitoring and predictive behaviour throughout the lifecycle. Rather than directly modifying
parameters within the model, this method utilises an intermediate model for conditional
analysis and parameter calculation, employing Bayesian methods to quantify uncertainty. Al-
Hijazeen et al. [110] integrated DT technology with the support vector machine algorithm to
monitor the health condition, enabling prediction and prevention of bridge damage or collapse.
Giannaros et al. [83] developed high- and low-fidelity FEM to simulate the dynamic response
of helicopter composite sandwich structures under bird-strike impact. These models were
validated for accuracy and ultimately served as virtual tools to support future DT-assisted
damage detection technologies. Wang et al. [82] proposed a DT-driven approach combining
XFEM, high-precision approximation models, and BNN to achieve efficient and accurate
structural fatigue life prediction. Zhang et al. [6, 13] proposed an integrated framework
that connects ML and FM to achieve RUL prognosis for adhesively bonded structures. The
difference between this model and a general DT model lies in the addition of a FM module
and a data filtering module to the DT framework. These studies employ predictive DT
technology for structural damage assessment from diverse perspectives, offering valuable
insights for enhancing the precision of structural operation and maintenance.

Additionally, the emergence of new technologies is significantly influencing the appli-
cation of DT within the SHM domain. Dang et al. [111] proposed a DT framework for
SHM that leverages cloud computing and DL. By integrating internet technologies with
cloud-based infrastructure, this approach facilitates the broader deployment of DT, effectively
enabling real-time monitoring and proactive maintenance strategies. Lai et al. [112] achieved
high-precision DT computation by employing multifidelity surrogate models, which were
validated through experiments conducted on aircraft wing structures. In another study, Hu
et al. [113] incorporated internet of things and digital signal processing technologies to
autonomously acquire sensor data in real time within a building information modelling
environment. Their method addresses the challenge of visualising structural behaviour and
conducting damage analysis across various locations within structural components. All in all,
these advancements underscore the expanding potential of DT in SHM, particularly in en-
hancing real-time monitoring, predictive maintenance, and structural diagnostics through the

integration of advanced technologies. As research in this area progresses, further innovations
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in cloud computing, artificial intelligence, and internet of things are expected to accelerate

the evolution and practical adoption of DT applications in structural health monitoring.

2.5 Summary

This chapter introduces three key aspects. First, it discusses damage detection technology
based on GW, which constitutes one of the most widely adopted techniques in the field
of SHM. A review of current research indicates that the primary challenge hindering its
large-scale application lies in the effective analysis of the collected GW data, as dispersion
and multimodality present significant obstacles to its widespread adoption.

Next, this chapter explores technologies for predicting RUL, focusing on several com-
monly used approaches, including NN, ML, statistical methods, and numerical simulations.

Finally, the chapter examines the application of DT technology in the SHM domain,

introducing how it enhances SHM by enabling more accurate and efficient damage detection.



Chapter 3

Remaining useful life prognosis based on
data-driven methods

3.1 Introduction

This chapter not only reviews existing methods in the literature but also explores potential
improvements to adapt these approaches for damage detection and life prediction in bonded
composite structures. The discussion covers CNN, RNN-LSTM, and BNN models, along
with techniques for uncertainty quantification. Autoencoders are also introduced as a means
of reducing high-dimensional input data. In addition, DT technology is addressed, including
its application in this study for both damage detection and RUL prediction. The chapter
concludes by presenting evaluation metrics for ML-based predictions and approaches for

uncertainty quantification.

3.2 The framework of remaining useful life prognosis using

data-driven techniques

RUL prognosis is a continuous, long-term predictive task. As illustrated in Fig. 3.1, the ob-
jective is not only to ensure the reliability of prediction results but also to support appropriate
maintenance, which represents the ultimate goal of RUL prediction and prognosis health
management (PHM). This dissertation focuses on signal acquisition, damage quantification,
and RUL prognosis in the adhesive zone. The overall process is systematically divided into
five key technical stages. First, GW are excited and acquired using PZT sensors bonded
to the specimen surface. The registered data are then analysed to extract damage-related

features under different damage conditions. Subsequently, the correlation between the dam-
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age signal and the baseline signal is calculated to determine the damage indicators (DI),

thereby enabling the quantification of damage extent. The quantified damage extent is used
as a label for RUL training dataset. Next, uncertainty quantification is performed on the
predicted RUL to enhance the credibility of the prognosis. Finally, based on the uncertainty
quantified prediction results, the current damage evolution of the structure is assessed to

guide maintenance and operational decision-making.
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Figure 3.1 Framework for RUL prognosis and health management of bonded composite structures
based on data-driven technology.
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3.3 Neural networks in remaining useful life prediction

This section introduces NN related to SHM and NDT, which are widely used for training
damage data and predicting RUL. Alongside the introduction of these networks, their basic

architectures have often been modified to better suit prediction tasks.

3.3.1 Recurrent neural network

The RNN is a classical NN architecture particularly effective for sequential data. It is capable
of capturing temporal dependencies, making it well suited for analysing fatigue damage data
that involves time-series information. RNN also represents one of the earliest NN models
applied to RUL prediction tasks.

In the context of lifespan for composite structures, let x; denote the crack length observed
at fatigue cycle t. The primary objective of the RNN model is to estimate the damage level
at cycle (r +1). The probability of a particular damage state occurring at cycle (t 4 1) is

expressed as follows:

(x17x27"'7xl‘717xl)Np<x[+1)' (31)

The first step of establishing an RUL prognosis model is to find a p(damage) that
represents future damage information. In this manner, future data can be predicted based
on historical observations. This relationship can be further extended using conditional
probability, such that:

p(xi1) = p(x1) - plxafxy) -+ p(xe|xi,x0, .. x—1). (3.2)

Using prior data to estimate future states introduces a key challenge: as the number of
predicted fatigue cycles increases, the value of ¢ grows large, making multivariate probability
prediction computationally intractable, particularly in long-duration fatigue processes relevant
to RUL prediction. To address this issue, a common approach is to apply the Markov
assumption. This probabilistic model for sequential data posits that the current state depends
only on a finite number of prior states and is conditionally independent of all earlier states.

Accordingly, the probability of damage at a given cycle ¢ can be defined as:

POXelxi—1, %2, ..., x1) = p(X|Xe—1,X—2, ..., Xs—p),n < 1. (3.3)

By adjusting the order n of the Markov chain, the dependency of the current state on
previous states can be controlled, thereby reducing computational complexity. For example,
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if n = 2, the model becomes a second-order Markov chain, in which the current state depends
only on the two most recent states. As such, Markov chains are used to keep a balance
between computational efficiency and predictive accuracy in time-dependent applications.

Through this approach, complex time-series data are transformed into a formulation
governed by the static hyperparameter n. The conditional probability P(x; | x;—1, -+ ,X—n)
can be modelled using NN methods. A network is constructed that accepts n-dimensional
input (i.e., (x;—p, -+ ,Xx,—1)) with a single output node that predicts the value of x;. Supervised
training is then employed to optimise the model parameters.

The general architecture for damage detection in plate-like structures using RNN [24] is
illustrated below. Unlike a standard fully connected NN, RNN incorporates feedback loops
within the hidden layers. This feature enables the hidden state at time ¢ to depend not only
on the input damage data at that time step but also on the hidden state from the previous
cycle (t — 1). Accordingly, the RNN structure can be mathematically described by Eqgs. (3.4)
and (3.5),

hy = & (Wanxi + Wihy—1 + b)), (3.4)

y; = softmax (W, - hy), (3.5)

where o is an activation function, commonly chosen to be the tanh or rectified linear unit
(ReLU) function. In this context, the softmax function is used to convert the output (W, - i)
into a probability distribution for different classes, which makes it useful for classification
tasks. Given a vector z of real values, the softmax function is defined as:
eZi

softmax(z;) = W, (3.6)
where z; is the i-th element of the vector z. This function ensures that each output value y,
lies within the range [0, 1], and that the sum of all elements in y, equals 1, thereby forming a
valid probability distribution. In a standard RNN, the hidden state /4; is computed from the
current input x; and the previous hidden state 4,_1. The hidden state /; serves as a memory
mechanism, retaining information from prior time steps. By propagating 4, through one or
more layers, the output y, at the current time step is obtained.

During training, a loss function is employed to quantify the discrepancy between the
predicted output and the ground truth. This loss is used to update the model parameters W,,
Win, Wy, and the bias term b, via backpropagation. If the recurrent weight matrix is removed
(i.e., setting Wy, = 0), the RNN reduces to a feedforward NN. In this configuration, the
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hidden state is updated solely using W,;,, and temporal dependencies are no longer captured,
resulting in a model that lacks memory of previous states.

The RNN architecture for damage signal prediction is illustrated in Fig. 3.2. This typical
RNN structure consists of an input layer, one or more recurrent hidden layers that capture
temporal dependencies, and an output layer. The model introduced in [24] is trained to
predict signal responses across different damage extent by learning the sequential patterns
embedded in the GW data.
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Figure 3.2 Classical architecture of the RNN model for predicting GW damage signal.

3.3.2 Temporal convolutional network

As one of the earliest models applied to RUL prognosis, the RNN has shown clear advantages
in handling sequential data. However, its low computational efficiency and limited support
for parallel processing have led many researchers to shift their attention to CNN. While
classical CNNs are highly effective in processing spatial data, particularly images, they are
less suited to time series applications. To address this limitation, this section introduces

temporal convolutional networks as a means of adapting CNN for time-dependent problems.
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A typical CNN architecture for RUL prediction is illustrated in Fig. 3.3. The model
comprises an input layer, convolutional layers, pooling layers, fully connected layers, and an

output layer.
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Figure 3.3 The typical CNN architecture for damage detection.

As the core of CNN, the convolutional layer is primarily responsible for feature extraction
and computation on the input data. The convolution operation defined by the input and output
is denoted as follows:

K—11-1J-1

Y (m,n) = X*(m,n) « H* (m,n) Z Z ZXk (m+i,n+ j)H" (i, ), 3.7)
=0 i=0 j=0

where X and Y represent the input matrix of the k-th layer and the output matrix of the /-th
layer, respectively. The convolution kernel at the k-th row and /-th column is denoted as H.

CNN incorporates pooling layers between convolutional layers, primarily to reduce the
dimensionality of feature maps, which reduces the risk of overfitting. The fully connected
layer further compresses the extracted features for the final output. In forward propagation,
the network sequentially computes the output of each layer, calculates the loss between the
predicted output and the target function, and updates the weights to complete the training
iteration. However, conventional CNNs are generally less effective than RNNs in handling
time-series data, owing to their lack of temporal encoding and the absence of explicit
connections between past and future states. Consequently, CNN is typically not used alone
for RUL prediction. Enhancements to CNN models focus on enabling temporal feature
extraction to better process sequential data.

Assuming the crack length at fatigue cycle ¢ is obtained from testing, the objective of
training the CNN is to predict the RUL at (# + 1). This requires the output y; at time ¢ to
be influenced by historical data, including observations at ( — 1) and earlier. To address
this, the improved CNN architecture has to allow each output at time 7 to be computed using

information from both the current and previous, ensuring that all data used from time steps
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before 7. To handle time-series problems, the network must possess a long-term memory
mechanism capable of capturing patterns across extended time intervals. However, this
typically requires a very deep architecture, which significantly increases computational
complexity. To address this limitation, dilated convolution is introduced. This technique
inserts a fixed convolutional operation unit ' between adjacent layers, along with a dilation
rate parameter that enlarges the receptive field of the convolutional kernels without increasing
the number of parameters.

The dilation factor d controls the receptive field size of the enhanced CNN. When d =1,
the operation corresponds to a standard convolution. As d increases, the receptive field of the
one-dimensional CNN expands, enabling the model to capture longer-term dependencies.
This architecture allows deeper contextual understanding using a relatively shallow network.
By adjusting the number k of dilated residual filters, various d values can be set to extract
temporal features at different scales. The receptive field can be calculated as follows:

Receptive Field = [(k—1)-d +1]. (3.8)

The relationship between different dilation rates and the number of NN layers is illus-
trated in Fig. 3.4. By appropriately increasing the parameters of the residual filters, the
computational loading associated with deep network architectures can be effectively reduced.
Furthermore, the incorporation of residual modules ensures dimensional consistency between
the input and output of the CNN, thereby facilitating stable training and efficient information
propagation through the network.
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Figure 3.4 Temporal convolutional network structures corresponding to different receptive fields.



3.3 Neural networks in remaining useful life prediction 30

3.3.3 Long short-term memory network

The LSTM network was developed as an extension of the RNN, specifically designed to
address its limitations in processing long time-series data. In many RUL prediction scenarios,
it is necessary to analyse the cumulative damage at time ¢ because only calculating based
on damage at time (¢ — 1) is insufficient. A more accurate approach involves utilising all
data from time O to (¢ — 1). This is particularly important because the initial damage state
significantly affects the extent of the damage and the RUL of the composite. As a result,
RNN is greatly limited when handling long time-series cases. To overcome this, the LSTM
was proposed by Hochreiter [114] to explicitly avoid the long-term dependency problem.
The ability to store long-term state data and information is a key feature of LSTM. Like
all RNN, LSTM has a chain structure of repeating NN modules. LSTM not only possesses
the memory capability for short-sequence data but also includes control units for storing
long-term memory. In the RNN-LSTM hybrid model, the neurons result from a combination
of logical operations and a tanh activation layer, as illustrated in Fig. 3.5.
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Figure 3.5 The typically LSTM repeating neural unit.

LSTM networks manage both long-term and short-term information through gated control
units. These include the input gate, output gate, and forget gate, which regulate the flow of
information into, out of, and within the memory cell. Specifically, the forget gate determines
the proportion of the previous cell state at time (¢ — 1) that should be retained or discarded in

the current state. The cell state of forget gate f; is defined as follows:
fi=0 (Ws-[h_1,x]+by). (3.9)

The forget gate serves as the core control mechanism in the LSTM architecture, regulating
how much information from the previous state should be discarded. It operates by receiving

the previous hidden state /,_; and the current input x;, which are first subjected to a linear
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transformation. This is followed by a sigmoid activation function that produces an output
in the range [0, 1], representing the proportion of information to retain or forget. The forget

gate is expressed as:
Ci= fixC_1+0(W;- [hy_1,x]+b;) xtanh (W - [h—1,%] + bc) . (3.10)

The cell state C; forms the core of memory in the LSTM architecture. It determines how
the previous state influences the current state by combining two ways: the retained portion of
the previous cell state, regulated by the forget gate (f; - C;—1), and the weighted update of the
current input, controlled by the input gate (6(W; - [;—1,x;] + b;)). This process is formulated
as:

hy =06 (W - [hi—1,%] 4+ b,) *tanh (C;) . (3.11)

The output /4, is the hidden state at the current cycle. It determines the output of the next
state. As shown in Eq. (3.11), the output is controlled by the cell state C;. Specifically, the
output gate applies a nonlinear transformation to the cell state C; using the tanh function, and
then multiplies the result by the activation value of the output gate (obtained via the sigmoid
function) to produce the final hidden state ;.

Above is the forward propagation process of the LSTM. As a NN, back propagation of
the error is essential. Let £ be the loss function of the LSTM, then the error calculated from

the output is described as follows:

& = ah H Won+ 87 . Wen + 8/, Wi + 87 ;Wen, (3.12)
t ]7
where W, Wep,, Wiy, and Wy, represent the weights of the outputs from different gates, which
measure their respective contributions to the error. Expanding the Eq. (3.12) to the entire NN
gives the following result:
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The hidden outputs of different gates are represented by 4 with subscripts. By calculating
the partial derivatives, the error can be used to represent the back propagation process. The
result of back propagation is to compute the error at each layer, then use gradient descent
to continually update the weights, thereby updating the outputs of the forward computation.
This process is repeated iteratively until the stopping criteria are satisfied.

3.3.4 Autoencoder hybrid networks

RUL prediction is a typical data-driven task that relies on large volumes of preprocessed
input data, such as damage features, stress-strain (S-S) curve, and fatigue cycles, to ensure
accurate forecasting. The preceding subsections outlined methods for handling sequential
data. While RNN was one of the earliest models applied to RUL prediction, it has gradually
been replaced by temporal convolutional networks and LSTM due to its limited ability to
extract high-dimensional features from sequence inputs.

However, a common limitation among these networks is the lack of dimensionality
reduction for input data. High-dimensional inputs impose significant computational demands,
making dynamic hyperparameter tuning difficult. To address this, methods that integrate
NN with efficient batch processing and dimensionality reduction have been proposed. One
such method is the autoencoder, which compresses input data into a lower-dimensional
representation and attempts to reconstruct the original signal. The model structure is shown
in Fig. 3.6.
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Figure 3.6 Diagram of the auto-encoding of input data by an autoencoder using a CNN as an example.
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The autoencoder consists primarily of an encoder and a decoder. When applied it to
process input data of RUL prediction models, its objective is to transform high-dimensional
input data x into an intermediate representation ¢ (x), which is subsequently converted into a
simplified version X. The training goal is to ensure that the reconstructed output X closely
approximates the original input X. In the context of RUL prediction, the autoencoder operates
as an unsupervised NN that first encodes hidden features from large volumes of input data
and then decodes them to reconstruct the original input.

The function of the autoencoder in preprocessing is analogous to that of principal compo-
nent analysis. However, RUL models frequently involve high-dimensional inputs containing
complex nonlinear relationships, where damage features cannot be represented as linear
combinations of input variables. These nonlinearities can be effectively addressed by using
nonlinear activation functions within the NN-based autoencoder. Owing to the strong function
approximation capabilities of NN, the model can capture complex nonlinear transformations
and extract representative high-dimensional features.

The encoder maps the high-dimensional input x into a lower-dimensional latent feature
space. This transformation is achieved through a linear mapping followed by a nonlinear

activation function, as explained in the following equation:
¢ (x) = o(Wyx+by), (3.16)

where Wy and by represent the weight and bias, and o is the activation function (such as
ReLU or Sigmoid). The core goal of the encoder is to extract the key features from the
original input data while reducing the dimensionality of the data and retaining as much useful
information as possible. The decoder is used to transform the low-dimensional feature z
generated by the encoder back into a reconstruction X that is as similar as possible to the
original input x.

The transformation carried out by the decoder is similar to that of the encoder and can be

expressed by the following equation:

where Wy, and by, are the decoder parameters. Meanwhile, the autoencoder optimises its
parameters through backpropagation so that the encode features can be restore the original
input data.

The reconstruction loss function is introduced to evaluate the quality of the feature
representations, which measures the difference between the reconstructed data and the

original data. Using mean squared error (MSE) as the loss function, the total loss can be
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defined as:
1 Y o 1Y 5
29,w) =5 Y Ix—%l2 =3 Y = w(o(x) (3.18)
i=1 i=1

where x; denotes the i-th sample, and X; represents the reconstruction result from the decoder.
By minimising the reconstruction loss, the parameters of both the encoder and decoder can be
optimised to ensure that the features extracted by the encoder preserve as much information
as possible from the original input.

There are various approaches to designing the encoder and decoder. If sufficient prior
knowledge of the structural damage data distribution is available, it may be possible to
construct explicit encoding and decoding functions based on this information. However, in
most cases, the distribution of sample data is highly complex and cannot be easily inferred
using analytical methods. As a result, NN are employed to learn the encoder and decoder
directly, with their parameters updated automatically through backpropagation or other
optimisation techniques. This data-driven approach is the most commonly adopted method

in RUL prediction workflows.

3.4 Digital twin

DT has become a research hotspot in SHM, with increasing emphasis on integrating physical
systems and virtual simulations to enhance the accuracy of RUL prediction. Compared to
conventional RUL prediction methods, DT distinguishes itself by combining virtual model
with physical model within ML-based frameworks.

The overarching goal of DT is to facilitate real-time monitoring and analysis of physical
systems through virtual representations, supporting the assessment of fatigue damage, crack
growth, and corrosion-induced failure in structures. However, constructing a full-scale
virtual replica is often impractical and unnecessary. The acquisition of detailed geometric
data and deployment of extensive analog/digital modules and sensor arrays for continuous
microstructural monitoring are costly and may exceed practical requirements. As a result,
recent research has shifted towards expert system-based DT frameworks that integrate
multiple data sources to improve the accuracy of RUL prediction. Studies such as [13, 82,
89, 105] present comprehensive examples of DT applications in RUL estimation. These
works primarily focus on integrating various NN architectures and combining numerical
simulations with experimental validation. As a multi-physics, multi-scale, and probabilistic
methodology, DT enables damage prediction and SHM by synthesising physical models,
real-time sensor data, and historical records.
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Crack propagation prediction represents one of the key applications of DT in SHM.
Traditional numerical methods such as FEM, boundary element methods, and XFEM have
been instrumental in crack analysis, though they are often limited by a lack of validation
against empirical data. Integrating these simulations with real-world detection data has
become a widely adopted DT strategy for RUL prediction. Additionally, the incorporation of
surrogate models has improved the efficiency and reliability of crack propagation analysis.
Fig. 3.7 illustrates representative technical solutions and frameworks for applying DT to RUL
prediction within the SHM domain. This approach provides an effective means of addressing
uncertainties in crack propagation and contributes to future advancements in SHM.

The core concept of DTHM proposed in this dissertation involves the following process:
first, nonlinear crack propagation paths are simulated using FM based on FEA simulation
data, producing numerical data that is labelled accordingly. This simulation data is then
combined with experimentally measured data through a preprocessing stage to construct a
comprehensive dataset. The resulting dataset serves as input for training and testing RUL

prediction models, enabling RUL prediction and uncertainty quantification.
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Figure 3.7 The framework of using DT techniques to predict the RUL of adhesively bonded structures.



3.5 Uncertainty quantification 36

3.5 Uncertainty quantification

In aerospace and other high-safety industries, RUL predictions must not only be accurate but
must also incorporate uncertainty quantification to ensure sufficient confidence in the results.
If the predicted RUL exceeds the structural health threshold, the system may progress towards
irreversible failure, thereby undermining the fundamental purpose of SHM. Consequently,
it is essential that RUL predictions be evaluated and that their associated uncertainties be
quantified, particularly those stemming from sensor-based measurement uncertainty. In
predicting the RUL of a structure, several sources of uncertainty must be taken into account:
measurement uncertainty introduced by sensors, model uncertainty inherent in the RUL
prediction model, and random uncertainty associated with prediction variability. Accurate
quantification of these factors is critical to achieving reliable prognostics.

Many strategies have been proposed to address uncertainty. These include performing
multiple measurements to reduce measurement uncertainty and deploying interconnected
DL models to address predictive uncertainty. With ongoing advances in ML, an increasing
number of studies now integrate uncertainty quantification directly into RUL prediction. MLL
techniques are especially effective in learning complex damage and predicting RUL and EoL
from limited measured data. Nonetheless, predictions produced from a single deterministic
model still offer limited practical value. Although adjusting model parameters or network
architectures may reduce internal uncertainty, such approaches do not address uncertainties
originating from noisy or variable input data. As a result, the output of a conventional NN
is a single-value estimate for RUL or EoL, which is highly sensitive to variations in input
conditions. Even slight changes in the test environment or input dataset can significantly
affect the output, limiting its reliability for real-world decision-making. Moreover, single
value estimates offer limited interpretability in practical engineering applications, as they
fail to capture the probabilistic nature of structural degradation. Thus, beyond single-
value predictions, RUL prognosis must include a reliability assessment, specifically, the
construction of confidence intervals. Characterising prediction uncertainty is essential not
only for validating the underlying model but also for reducing the randomness and instability
inherent in individual predictions.

To date, relatively few studies have focused on comprehensive uncertainty quantification
in RUL prediction. The primary research directions include NN-based uncertainty modelling
and the formulation of prediction confidence intervals. The most widely adopted method
in this area is the BNN, which addresses the limitation of conventional NN models in
expressing uncertainty. Unlike standard NN, the BNN considers node parameters as random
variables governed by probability density functions, thereby enabling robust representation

of parameter uncertainty.
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The following section introduces the BNN as a commonly used and foundational model

for uncertainty quantification in RUL prediction.

3.5.1 Uncertainty classification and quantification

Uncertainty in RUL prediction can be broadly categorised into two types based on its origin:
aleatory uncertainty and epistemic uncertainty. Aleatory uncertainty arises from inherent
randomness in the observation process and is considered irreducible within the context of
NN prediction. Common sources include noise introduced by PZT during GW excitation or
sensing, as well as internal noise generated during signal processing. This type of uncertainty
cannot be eliminated through larger datasets or advanced signal processing techniques; rather,
it may only be reduced by changing measurement methods and improving data handling
standards.

In contrast, epistemic uncertainty stems from the prediction model itself and is also
referred to as model uncertainty. Unlike aleatory uncertainty, epistemic uncertainty is re-
ducible and can be reduced by increasing the size of the training dataset or optimising
model parameters. It can be further subdivided into parameter uncertainty and structural
uncertainty. Parameter uncertainty involves assumptions about the distribution of model pa-
rameters (typically a Gaussian distribution) followed by estimation of posterior distributions
based on observed data. Structural uncertainty relates to the choice of model architecture or
assumptions made during model construction, such as symmetry or distributional constraints.
In practice, uncertainty quantification often requires probabilistic analysis of both model
parameters and outputs. Epistemic uncertainty can be addressed by placing prior distribu-
tions on network weights, while aleatory uncertainty is typically assessed by analysing the

distribution of model outputs. A summary of these uncertainty types is presented in Tab. 3.1.

Table 3.1 Classification of uncertainty in Bayesian modeling

Uncertainty Sub Definition Characteristics Decrease
Aleatory Homo-  Uncertainty level is the ~ Minor impact, easy to ~ No
scedastic  same for all inputs handle
Hetero-  Different inputs lead to  More common, Hard
scedastic  different levels of increases prediction

uncertainty difficulty
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Table 3.1 (continued)

Uncertainty Sub Definition Characteristics Decrease
Epistemic  Parameter Uncertainty in the Requires prior Bayesian
distribution of model distribution assumption inference
parameters
Structural Uncertainty due to Influenced by modeling Improving
different model choices methods model
architecture

Common methods for uncertainty quantification include prediction variance, variance
ratio, prediction entropy, and mutual information. However, not all of these techniques
are widely adopted within the SHM domain. Among them, prediction variance is the
most frequently used approach for quantifying uncertainty in RUL prediction. It evaluates
uncertainty by computing the variance of the posterior distribution of the model’s outputs.
The variance ratio, in contrast, is typically applied to classification models; it is calculated
based on the predicted probabilities of different categories and serves as an indicator of
model confidence. In addition to these approaches, uncertainty quantification can also be
achieved through Bayesian inference methods, such as Markov chain Monte Carlo sampling
and deep Gaussian processes, as well as ensemble-based techniques, including variance
analysis in ensemble ML frameworks. Each of these methods is suited to specific tasks,
including classification, regression, and adversarial sample detection. In this dissertation,

MC sampling is employed within the proposed model to perform uncertainty quantification.

3.5.2 Bayesian neural networks

The BNN is a representative model used for uncertainty quantification, introducing prob-
abilistic reasoning into the classical NN framework. While the topological structure of a
BNN is similar to that of a conventional NN, it differs by treating network weights and
outputs as probability distributions rather than deterministic values. Consequently, the model
parameters become random variables, enabling uncertainty to be quantified through prob-
ability distributions. BNN introduces a prior distribution p(®) over the model parameters
, allowing the training process to incorporate uncertainty in RUL prediction. Given a
training dataset (X,Y), where X = {x()}" | represents the input data and ¥ = {y()}  the
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corresponding outputs, the model parameters @ are inferred using Bayesian inference to
obtain the posterior distribution p(® | X,Y’), which is then used for prediction. The posterior
distribution for the RUL model can be defined by Eq. (3.19) using a likelihood function
expressed as [TV, g(y\!) | f@(x19)), where g(-) denotes the Gaussian distribution, such that:

g | o))
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Since the integral in Eq. (3.19) is intractable, approximation techniques such as variational
inference (VI) or Markov chain are typically employed. The following section introduces
the use of VI combined with dropout, which represents one of the most widely adopted
approaches in current research.

BNN introduces uncertainty quantification in predictions, consisting of epistemic uncer-
tainty and aleatoric uncertainty, which is described in Subsection 3.5.1. For classification
tasks, epistemic uncertainty is modeled by parameter uncertainty, typically using a Softmax
likelihood function,

exp(/fe”(¥))
Yeexp(f7(x))

plolX,Y) = (3.20)

The RUL prediction process can be considered as a regression problem, the output is

defined to follow a Gaussian distribution,
p(olX,Y) = A (y;£°(x),7'D), (3.21)

where f(x) is the prediction result of NN, and 7! controls the noise variance, representing
aleatoric uncertainty.

Since computing the posterior is hard, it is necessary to approximate it with a variational
distribution gg(®) and minimize the Kullback—Leibler (KL) divergence,

KL(go(@)[p(0X.1)) = [ qa(@)10g 1212 62

(0]X,Y)

The variational inference objective function is

2vi(0) := /qe(w)logp(leaY)dw —KL(go(0)|p(®)). (3.23)
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The goal of KL divergence is to measure the difference between the approximate distri-
bution gg(®) and the true posterior distribution p(® | X,Y). Connecting the Eq. (3.19) and
Eq. (3.22), the KL divergence of gg(®) and p(® | X,Y) can be organised as follows:

qo(®)
p(o)

- ]Z:V; /q(a(w)log (1152 (+9))) doo (3.24)
+log (/p(w)ﬁl (150 (x)) d(o) ,

dw

KL(q0(@)]lp(@| X.¥)) = [ go(0)log

=1

where KL (gg(®)||p(®)) as the first term in the right side of the Eq. (3.25), represents the
KL divergence between the approximate distribution gg (@) and the prior distribution p(®).
Minimizing this term ensures that g (®) remains close to the prior. The second term is the
expected log-likelihood concerning ¢y (@), which measures how well the model explains
the data. This term determines the fitting quality of the NN model. The last one means a
constant that has no relationship with the variable. Thus, the optimization process involves

minimizing KL (¢4 (®)||p(®)) while maximizing the following term:

ii / ao(@)1og (1(y | 1 (x))) do. (3.25)

Since the dataset volume N is typically large, summing over all samples results in
a high computational cost. Besides, the RUL prediction model f®(x) is often complex
and obscure, making high-dimensional integration over @ difficult. To address this issue,
Gal et al. proposed the dropout method in [115], interpreting Dropout as a variational
approximation to the distribution of NN weights, thereby enabling Bayesian inference. This
method treats dropout as a way of sampling from gg (@) without explicitly computing the

posterior distribution. It is calculated by the MC sampling method as follows:

1 T
By (o) 108103 | F00)] =+ Y logl(y] £ (0). (.20
=1

where @, represents the weights sampled using dropout, and 7 is the number of samples.
Since dropout applied to weights can be considered as a specific form of variational distribu-
tion, it demonstrated that dropout approximates Bayesian inference over p(®), allowing the
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KL divergence to be simplified as an L2 regularization term:
KL (g9()[lp(@)) ~ A[|6]%, (3.27)

where A depends on the dropout rate and prior assumptions. This method avoids the need to
change the entire distribution, requiring only random neuron masking during forward passes.

The optimization objective for variational inference can be further expressed as

1 Y 1—p
Z(6,p) = = Y logp (@] xi,yi) + —= 0], (3.28)
i=1

where the N and p denote the volume of samples and probability of dropout, respectively.

Furthermore, uncertainty estimation can be achieved through MC sampling, thereby
avoiding the computational burden associated with traditional MC sampling methods. In
this context, uncertainty quantification within a BNN is based on the posterior distribu-
tion p(w | X,Y). By incorporating variational inference techniques alongside dropout, the
inference process becomes computationally tractable, enabling uncertainty quantification
during prediction. Model training still relies on standard stochastic gradient descent (SGD)
optimisation, while predictive uncertainty is quantified through the computation of the mean
and variance of multiple forward passes. Detailed mathematical equations for implementing
the evidence lower bound (ELBO) using KL divergence, as well as for performing uncer-
tainty quantification via dropout, are provided in the literature [115]. Fig. 3.8 illustrates the
BNN-based framework for RUL prediction.

3.6 Evaluation indicators of remianing useful life

Data-driven approaches are popular for predicting RUL. These methods utilise system
state monitoring data as input and apply predictive models (as discussed in Section 3.3) to
estimate the duration from the onset of damage to the EoL. Within this predictive process,
the validation of results and the quantification of associated uncertainties are essential for
assessing the reliability of the prognosis. This section introduces commonly used evaluation
metrics for RUL prediction. The application of these metrics allows for an analysis of
prediction results. The appropriate use of such indicators is a critical step in translating

predictive models into practical tools for PHM.
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Figure 3.8 The flowchart of employing BNN to quantify uncertainty.
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3.6.1 Error-based evaluation methods

For regression-based prediction models, error metrics are essential for evaluating the perfor-
mance of ML algorithms. Commonly adopted metrics include MSE, root mean squared error
(RMSE), and mean absolute error (MAE).

The RUL prediction task is considered as a typical regression problem, the error between
the actual RUL (RUL;cya1) and the predicted RUL (RULp,.) at a given time #; is defined as
ERruL(t;). Here, t; denotes any time point i during the prediction process, where #; € [0, EoL].
The MSE for RUL prediction is defined as:

1 & 2
MSERuL = — Z (RULactual(ti) - RULpre (ti)) . (3.29)
i=1

S

The model is considered to perform optimally when the predicted results closely align
with the actual RUL. A larger error corresponds to a higher MSE value, indicating reduced
reliability of the prediction. RMSE offers a more interpretable measure by expressing the
average prediction error in the same units as the original data. It reflects the typical deviation

between predicted and actual values and is defined as follows:

1 & 2
RMSEgryL = \/ - Y (RULqcual (i) — RULpre (£7)) (3.30)
i=1

The RMSE is often used as an evaluation metric for the loss function of prediction models.
It is based on the assumption that the errors follow a normal distribution. Therefore, before
predicting the RUL, it is necessary to verify whether the sample data meet the condition of
normal distribution. Additionally, smoothing processing is usually applied to the data in
order to avoid the impact of outliers.

To overcome the limitation of absolute error being scale dependent, considering percent-
age error is a feasible solution. The mean absolute percentage error (MAPE) is one of the
most widely used error metrics in the industry due to its simplicity and intuitive interpretation.
However, MAPE-estimated prediction models tend to produce lower prediction results, so it
is crucial to ensure consistency between the prediction target and the error metric during use,
such that

1 n
MAE = p Z }RULactual(li) —RULpre (ti)‘ ) (33D
i=1
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100% & | RULqetual (1) — RULpre ()

MAPE =
n l:ZI RULcual ()

(3.32)

Tab. 3.2 presents a comparison of commonly used error evaluation metrics for assessing
RUL prediction performance. In practical applications, it is essential to recognise the specific
risks and limitations associated with each metric and to avoid relying solely on a single

criterion when evaluating model accuracy or formulating maintenance decisions.

Table 3.2 Error Metrics and Their Application in RUL Prediction

Metrics Advantages Disadvantages Suitable for RUL
Prediction
MAE Easy to interpret Sensitive to outliers Evaluation lose function

and results

RMSE Emphasizes larger Highly sensitive to Loss function, evaluation
errors outliers lose function and results
MAPE Intuitive and simple ~ Sensitive to outliers, not Evaluation results
to calculate suitable for values near
Zero

3.6.2 Accuracy-based evaluation methods

In addition to analysing the performance of errors in the prediction process, precision is also
a factor often considered in the RUL prediction process. The precision can be defined as
follows:

n N _F (+.))2
Precision:\/ i1 (Bn(ti) = Bn(1))* (3.33)

n—1

where n denotes the total number of time steps or data points corresponding to the EoL of
the prediction model NgoL. Precision is a relative metric that measures the degree to which

errors E,, deviate from the mean error E,, during the prediction process.

Em (ti) — RULaCtual(ti) - RULpre (ti)a (334)
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with #; € [1,n]. Prediction precision can be regarded as the MSE of the error, where a smaller
value signifies more concentrated RUL predictions, reduced fluctuation in the data, and
consequently, more reliable results. In contrast, a larger value may suggest that the RUL
prediction model is either insensitive to input damage features or exhibits instability in its
predictions.

To more accurately assess the proportion of prediction error relative to the actual service
life, the metric of relative accuracy (RA) is commonly employed. RA at a specific fatigue
time #;, denoted as RA(t;), quantifies prediction accuracy at that point and is defined as
follows:

Em(ti)

| (3.35)
RULactual (t i)

RA(t,-):l—‘

where E,(t;) is the prediction error at t;, RUL,wa1(f;) denotes the actual RUL at cycle
t;. RA quantifies the proportion of error in the prediction process relative to the actual
RUL. When RA(t;) approaches 1 at a given time #;, it indicates that the prediction error
E,(t;) is close to zero, suggesting that the predicted value closely matches the actual RUL.
Conversely, if RA(t;) = 0, the prediction significantly deviates from the true RUL, reflecting
poor performance of the prognosis model.

The RA metric is useful for evaluating a model’s ability to predict EoL at a specific
instance, as it represents the deviation of a single prediction from the actual value. However,
RA is limited when assessing accuracy across the entire RUL prediction process, as it
only captures isolated measurements. To address this, cumulative relative accuracy (CRA)
is introduced to evaluate the overall prediction accuracy over time. CRA represents the
aggregated prediction performance across multiple time steps and is defined as follows:

iz RA(1)

CRA = ZIT (3.36)

where RA(t;) is the relative accuracy at time #;. Thus, CRA represents the average value
of RA(t;) across all fatigue cycles and serves as a comprehensive metric for evaluating the
precision of an RUL prediction model over the entire lifecycle. Therefore, CRA is particularly
suitable for assessing the overall predictive performance of a system over extended periods
and is commonly employed to compare the effectiveness of different RUL prediction models
in long-term prognostic tasks.
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3.6.3 Scoring function

The scoring function represents another important approach for evaluating the prediction
results. While the above error-based metrics are useful, they often do not account for
the differing consequences of underestimation and overestimation. Such asymmetries are
particularly relevant in practical scenarios, where incorrect predictions may affect mainte-
nance scheduling and operational safety. To address this, customised scoring functions have
been developed that apply asymmetric penalties, thereby making evaluation outcomes more
meaningful and actionable for prognostics and maintenance planning.

The primary function of a scoring metric is to quantify the deviation between the predicted
and actual RUL, while simultaneously providing insights into the reliability of the model.
By employing an asymmetric formulation, the scoring function imposes different penalties
depending on whether the predicted RUL is an overestimation (#; < 0) or an underestimation

(h; > 0). The mathematical formulation of the scoring function is given as follows:

h[
Y (m —1>, hi < 0

Score = hy
v (et —1), m>o,

(3.37)

where h; represents the error between the predicted RUL and the actual RUL. A lower
score indicates superior prediction performance. The scoring function differentiates between
underestimation (h; < 0) and overestimation (h; > 0), assigning a higher penalty to the
latter. Overestimation is penalised more heavily because it may not allow sufficient time for
timely maintenance, thereby increasing the risk of unexpected structural failure. In contrast,
underestimation is generally considered less critical, as it introduces a conservative buffer
that enables earlier intervention. This asymmetric scoring approach ensures that model
evaluation reflects the practical consequences of prediction errors, thereby improving the

relevance of RUL predictions and application.

3.7 Summary

This chapter highlights the critical role of uncertainty quantification in the RUL prediction
process. As a key component in evaluating the credibility of prediction outcomes, uncer-
tainty quantification is indispensable for ensuring that the results are both trustworthy and of
practical engineering value. The chapter begins by introducing the various sources of uncer-
tainty inherent in RUL prediction, including sensor measurement uncertainty, model-related
uncertainty during prediction, and random uncertainty in the prediction outcomes. Next,

many NNs that have been used for predicting RUL are introduced. Although conventional



3.7 Summary 47

NN-based models can estimate RUL, they typically generate only a single deterministic
value without providing confidence intervals. This limitation reduces their applicability in
real-world engineering scenarios. Reliable prognostic models should not only produce point
estimates for the EoL but also quantify uncertainty, thereby offering insight into the reliability
of the prediction and mitigating the effects of uncertainty.

To address these challenges, numerous uncertainty quantification methods have been
proposed, with the BNN model being among the most prominent. This chapter introduces the
inference mechanism of BNN and explains how it achieves uncertainty quantification. In con-
trast to conventional NN, BNN assigns probability distributions to model parameters, thereby
capturing parameter uncertainty and enabling the generation of predictions accompanied by
confidence intervals. This probabilistic framework enhances the reliability of RUL estimates
by offering more informative outputs than single-point predictions. The BNN model dis-
cussed in this chapter serves as a fundamental approach to uncertainty quantification and is

also used as a baseline for comparison with the DTHM model proposed in this dissertation.



Chapter 4

Diagnosis-prognosis framework

4.1 Introduction

This chapter proposes an integrated DT-based framework for damage diagnosis and RUL
prognosis of bonded composite structures. The framework employs a hybrid model methodol-
ogy for RUL prediction and introduces an innovative DT model that integrates the XFEM with
FM. Furthermore, to address uncertainty in RUL prediction within the DTHM, this chapter
proposes a CNN-LSTM with dropout method to approximately replace traditional Bayesian

uncertainty quantification techniques, thereby enhancing the reliability of predictions.

4.2 Integrated framework for damage diagnosis and re-

maining useful life prognosis

This chapter proposes an integrated framework based on a DT-ML technique for damage
diagnosis and RUL prognosis of the adhesively bonded joints under fatigue loading. The core
contribution of this dissertation lies in acquiring damage information and predicting RUL by
measuring the GW signal and employing the DTHM model. These aspects are detailed in
Subsections 4.2.1 and 4.2.2, respectively. The integrated framework is illustrated in Fig. 4.1.
The diagnosis—prognosis framework constitutes the core of this dissertation and is proposed
based on the analysis conducted in the preceding four chapters. Its primary innovation lies in
the integration of FCP with a hybrid modelling approach to enable damage assessment of
bonded composite structures. The framework incorporates two data sources: simulation and
experiment, as illustrated in Fig. 4.1(a). In this figure, red data flows represent the simulation
path, while blue indicates the experimental path.
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The simulation branch consists of two key components. First, FEA based on the XFEM is
performed in Abaqus to simulate crack propagation within the adhesive region. This process
is governed by a traction-separation (T-S) law and is illustrated in Fig. 4.1(b). The second
component involves FCP computations, which simulate the nonlinear crack propagation
behaviour through numerical calculations. These are informed by the damage parameters,
crack evolution, and strain energy release values obtained from the XFEM simulations.
Further details of this process are presented in Subsection 4.3.3.

Similarly, the experiment is shown in Fig. 4.1(c), where measured GW are employed
to quantify damage extent. This constitutes a key part of the diagnosis process within the
framework.

Finally, the collected data are used to train the RUL prediction model, as illustrated in
Fig. 4.1(d).

4.2.1 Damage diagnosis

The damage diagnosis focuses on measurement methods, signal processing, and damage

extent quantification. The main research objectives are as follows:

* Using GW to analyse damage of adhesively bonded composite structures;
* Conducting the simulation and experiment;
* Signal processing techniques for extracting damage features;

* The relationship between the measured GW and damage extent, along with the calcula-
tion of the DI;

* Quantitative and qualitative evaluation of damage identification accuracy.

4.2.2 Remaining useful life prognosis

RUL prediction is primarily based on the integration of multi-model ML techniques with FM

approaches. The key challenges addressed in this study are summarised as follows:

* Developing data preprocessing techniques to determine the appropriateness of the

input database;

* Developing a fatigue crack propagation simulation method based on a multi-model

approach, specifically using XFEM and FCP;
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Figure 4.1 An integrated framework for damage diagnosis and RUL prediction in bonded composite
structures based on DT techniques.
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* Establishing the DTHM for damage extent calculation by integrating virtual and
physical models, incorporating FM into the DT framework to improve prognosis

accuracy;

* Employing a CNN-LSTM architecture combined with dropout and MC sampling to
approximately replace traditional BNN, enabling both RUL prediction and uncertainty
quantification;

* Defining evaluation indicators and combining experimental data with a 95% confidence
interval to qualitatively analyze prediction results;

* Providing constructive recommendations for practical applications combined with
DTHM.

4.3 Analysis of modules in the diagnosis-prognosis inte-

grated framework

The structure of the diagnosis-prognosis framework is shown in Fig. 4.1. This section
introduces the functions of each module within the framework and explains how they

contribute to damage diagnosis and RUL prediction.

4.3.1 Finite element analysis simulation module

The FEA module illustrated in Fig. 4.1(b) utilises a combination of finite element tools and
XFEM cohesive theory to simulate crack propagation in the bonded zone. The resulting
simulation data are incorporated into a DT database to support the training of a DL model.
Specifically, this module calculates the damage evolution across fatigue cycles using FEA,
offering valuable input data for FCP model. Furthermore, it generates key FM parameters
that can be employed in subsequent analyses.

The integration of XFEM with the cohesive constitutive model facilitates accurate sim-
ulation of crack propagation within the adhesive region. The principal advantage of this
approach lies in XFEM to compute crack growth directly, enabling cracks to propagate
in random directions with minimal sensitivity to mesh alignment—an improvement over
conventional CZM, which is more mesh-dependent. This capability renders XFEM more
representative of actual crack paths in adhesively bonded joints. This module also addresses
the issue of parameter estimation by extracting two critical parameters from simulation

data: the maximum traction force (Tax) and the strain energy release rate (G) in the T-S
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law, thereby eliminating the need for extensive experimental testing. The mechanism un-
derpinning the simulation model is depicted in Fig. 4.2, which shows the damage criterion
employed for the bonded region. The linear elastic T-S law defines the macroscopic rela-
tionship between traction force and displacement. When the traction reaches a predefined
critical value, corresponding to damage initiation, stiffness degradation begins—illustrated
in Fig. 4.2 as the transition from k; to k,, and subsequently to k, 7, where ks represents the
stiffness degradation path under fatigue loading. The criterion adopted to define damage

onset is based on the maximum principal stress.
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Figure 4.2 Damage onset and propagation process based on the T-S law.

The principle of XFEM for crack propagation is to add the enrichment function of crack
surface and crack tip displacement based on FEM, which is described in Eq. (4.1),

n 4
u=Y N (ui—i-Ha,--i—Zij,-j), (4.1)
i=1 j=1
where u denotes the displacement approximation function, N; is the FEA shape function, u;,
a; and b;; are the classical and additional degree of freedom, Q; represents displacement
function at the area of crack tip, i and j denote the number of nodes for the whole region and
crack tip, H represents the Heaviside function that crosses the level of the crack. The crack
calculation method of XFEM is shown in Fig. 4.3. This figure demonstrates two enrichment
functions used in XFEM. The background mesh represents the standard finite element mesh,
while the blue line represents the crack path. The Heaviside function is applied primarily
to the nodes on the crack surface to capture displacement discontinuities. The crack tip
enrichment function is applied to the nodes around the crack tip to accurately represent the

singular stress field.
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Figure 4.3 The diagram of the XFEM method using the finite element crack surface enrichment
function and crack tip displacement to calculate crack propagation.

The XFEM method is combined with a cohesive constitutive model based on the T-S
law to simulate the crack propagation within the cohesive zone, as illustrated in Fig. 4.2.
To address the problem of crack extension under mixed-mode loading conditions, this
dissertation adopts the maximum principal stress criterion to determine the onset of cracking.
This criterion is expressed in Eq. (4.2), as follows:

OJo OJlo
f=—+— =1 4.2)
Gmax Gmax

where 07, denotes maximum principal normal stress at tensile condition, anax 1S maximum
permission normal stress of adhesion. When the principal stress satisfies the damage initia-
tion criterion, the cohesive zone will start the stage of damage degradation. Simultaneously,
the critical stress intensity factor and crack extension variable under mixed mode are de-

scribed using the Benzeggagh-Kenane fracture criterion [116], which can be calculated using

Eq. (4.3), such that:
G m G m
MMR = (—S“e‘“> = (—” ) . (4.3)
Giotal G+ G

Thus, the critical energy release rate under mixed mode can be defined as:
Guc = Giic + (Gic — Giic)MMR. (4.4)

A bilinear T-S constitutive model of the interface is utilised to describe the process of
stiffness degradation. This dissertation combines the S-S curve and T-S law of the bonded

zone to illustrate the change in stress at the onset of damage [117]. Similarly, the relative
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displacement of the interface under mixed mode can be defined as:

8y =/ (8)*+ (812, (4.5)

S\ 2
1+ (%)
5 = 8! :

(4.6)
27

w4

6f' = f(Kn, &', Guic, Gic). 4.7

where 8! and 8! represent the normal (Mode I) and tangential (Mode II) components of
the separation displacement at the interface, respectively. Their combination yields the
mixed-mode equivalent separation displacement J,". 36 and 5({1 denote the critical separation
displacements for damage initiation under pure Mode I and Mode II loading, respectively,
while 9 is the corresponding equivalent value under mixed-mode conditions. 5}” denotes the
final mixed-mode separation displacement associated with complete failure, and is computed
as a function of the interfacial stiffness K}, the mixed-mode initial separation &/, and the
fracture energies G;c and Gyjc, which correspond to the energy release rates for Mode I
and Mode II, respectively. As shown in Eq. (4.7), the complete damage displacement at the
interface in the bonding zone is determined by two key parameters: the maximum traction and
the cohesive energy. Accurate determination of these parameters is essential for applying the
T-S law in engineering contexts. At present, extensive experimental testing remains the most
common method for parameter acquisition; however, this approach is both time-consuming
and costly. Since the objective of this dissertation is to predict the RUL, it does not aim
to explore the variations arising from different parameter estimation methods. Therefore,
based on the methods proposed in [118, 119], a mechanical parameter estimation model is
developed, as illustrated in Fig. 4.4. By identifying the fatigue point Ny corresponding to
adhesive cracking, the associated strain value is first obtained from the stain-fatigue curve.
This strain is then used to locate the corresponding point on the J-integral versus strain curve,
derived from FEA, in order to determine the Mode 1I fracture energy (about 0.31).

This method enables the determination of cohesive energy and strain parameters within
the T-S law. Subsequently, the corresponding strain is applied to the actual S—S curve to
calculate the maximum traction. The S—S curve used in this chapter is derived using Egs. (4.8)
and (4.9), following the approach outlined in [119], as follows:

o= Gnominal(l + gnominal)y (48)

€ = In(1 + &yominal)- 4.9)
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Figure 4.4 The parameter estimation principles for maximum traction and cohesive energy are adopted
in this study, with the material properties of the AV 138 adhesive [120].

Properties parameters for a commonly used adhesive material are determined using the
estimation method illustrated in Fig. 4.4. The results demonstrate that the application of
theoretical parameter estimation techniques has minimal impact on the uncertainty associated
with RUL prediction. Nonetheless, this approach significantly reduces the need for labour-
intensive and repetitive experimental procedures, offering considerable savings in both time
and cost. Consequently, based on the estimation parameters listed in Fig. 4.4 and the FEA
based on XFEM, a user-defined subroutine for high-cycle fatigue is presented in Fig. 4.5. In
XFEM simulation, high cycle fatigue simulation requires user-defined subroutines. Under
this program, fatigue crack initiation and propagation under cyclic loading can be accurately
simulated. This dissertation is implemented in ABAQUS by developing user materials UMAT
to define custom fatigue damage evolution criteria, update stress changes by calculating
degraded stiffness, and then determine the failure process. The subroutine calculates fatigue
damage accumulation based on the local stress history at each integration point.

4.3.2 Experiment module

The experimental section primarily comprises two parts: fatigue testing and damage diagnosis
using GW. Overview diagram of the experiment in this dissertation is shown in Fig. 4.6.
The core emphasis was placed on GW-based damage diagnosis, which was conducted
using both SLDV and PZT. In GW-based simulations, PZT sensors were employed to excite
and record GW signals. The acquired data served as the basis for damage quantification and
were also used as labels for training NN. In contrast, SLDV was not used for quantitative

analysis but rather to visualise the full-field wave propagation. This enabled a detailed obser-
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vation of GW interactions across the bonded zone, such as signal reflection and scattering
at damage sites. The insights gained from SLDV supported the validation of the numerical
model and enhanced the interpretability of the diagnostic framework.

The fatigue testing data used in this dissertation is referenced from the validated experi-
mental framework proposed by [73, 121]. Due to limitations in the available experimental
data, the dataset was extended by introducing additional Gaussian white noise to simulate
variability.

The original fatigue experiments were conducted on SLJ specimens with a 30 mm bonded
overlap length, 0.2 mm adhesive thickness, and 3 mm adherend thickness. Fatigue loading
was applied under constant amplitude fatigue conditions using a sinusoidal waveform, with
a stress ratio of R = 0.1 and a maximum load corresponding to 50% of the static failure
strength of SLJ. The loading frequency was set to 10 Hz, optimised to balance experimental
efficiency and mitigate thermal effects. Damage monitoring was carried out at fixed intervals
of every 200 cycles, allowing high-resolution tracking of crack initiation and growth while
minimising test interruptions. At each inspection point, the following were recorded: the
cycle count N, and the estimated damage length ¢. Fatigue testing was terminated either
when the damage length reached the full overlap or upon complete interfacial failure.

Another important experiment in this experiment focused on the use of GW to quantify
damage extent, which is also a common method for obtaining damage extent in fatigue tests.
In the physical experiment, structural information must be acquired via sensors attached to
the specimen in order to collect real damage data and the corresponding EoL values of the
adhesively bonded composite material, as illustrated in Figs. 4.1(a) and (c).

The recorded GW signals are preprocessed to extract relevant damage-related features.
These features are then correlated with damage evolution in the bonded zone to establish a
relationship between damage extent and the measured GW. To this end, a multi-indicator
quantification approach is adopted. The measured signals are first segmented using a win-
dowing technique based on varying ToF. Subsequently, the correlation between the processed
signals and the reference signal is computed to derive DI. The aim is to establish a damage
detection method tailored specifically to adhesively bonded composite structures, rather than
relying on general-purpose SHM techniques. The experimental procedure for damage extent
quantification is illustrated in Fig. 4.7.

Fig. 4.7 shows the experimental setup for GW-based damage diagnostics in bonded CFRP
structures. The SLDV controller and signal generator form the central control unit, which
drives the PZT actuators via amplifiers. The generated signals are transmitted to the PZTs
attached on the surface of the CFRP adherend. The SLDV scanning head located in front

of the sample performs a non-contact full-field laser scan, which allows visualization of



4.3 Analysis of modules in the diagnosis-prognosis integrated framework 58

PZT controller

Figure 4.7 The experimental setup for damage detection and quantification of adhesively bonded
structures.

the GW propagation in the bonding area. This helps to identify reflections and scattering
caused by damage. The vise holds the test sample during the measurement. The image on
the right shows a sample with a crack. This configuration allows simultaneous acquisition
of point-by-point PZT measurements and full-field visualization via SLDV, supporting both

quantitative analysis and qualitative verification of crack-induced GW scattering phenomena.

4.3.3 Crack growth model based on fracture mechanics and finite ele-
ment analysis

RUL prediction constitutes the core of the DTHM framework. It integrates multiple NN and
ML techniques and is composed of two primary modules: the data preprocessing module
(Subsection 4.3.3) and the prediction module (Subsection 4.3.4).

The data preprocessing module handles input preparation for RUL prediction using both
virtual (simulation) and physical (experimental) sources. Its primary objective is to combine
ML algorithms with FCP theory in FM to enable nonlinear numerical simulation of crack
growth. As illustrated in Fig. 4.8, the module consists of three components: a NN model, an
FCP solver, and a data filtering and storage unit.

The initial database is established using data from both virtual and physical models.
This includes stress—strain responses, FM parameters such as Gyc and o, along with
experimental measurements of damage and fatigue cycles. As shown in Fig. 4.8, the ML
network is employed to fit the parameters ¢ and m in Paris’ law using a combination of
simulation data and a subset of experimental results. Additionally, it predicts strain evolution



4.3 Analysis of modules in the diagnosis-prognosis integrated framework 59

No, Omax) 80, @o Initial crack a;,i = 0 |
_ Hidden

Calculation New data | ------- \

strain &, (return) ' | i

[} ! =)

a8
AGyy, df g3 %’
L@ =
8
_____________ _: -6.
! =
R
gg"®

52

=0

3
Parameters m

- e |

= Yes uncertainty o B
Sl AN quantification R -
13113
Q i[o
Calculati B
N, ic;: afEN Plot URL prog_nosis -
2= ao+ Aa a;~N;da/ ek o
LEE0 aN~N uantification Dataset

et somge |

| r TR da
! Cracks information: a;, N;, o

I
/| Data input Classification |4 Damage process: d; 5y«
| I

! Energy: Gy,

" Data delete
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along the adhesive interface to determine whether the maximum allowable strain threshold
has been exceeded. The processed outputs are then input into the FM-based hybrid model to
compute crack length and corresponding fatigue cycles.

The following introduces the details of crack growth calculation approaches. Considering
the cohesive T-S law model shown in Fig. 4.2, the normal stress o, (or 7;,) and stiffness

degradation d,, during the fatigue cycle process can be expressed as:

T = kn8y(1—dy), (4.10)
81(8,— )
dy = 5.5, 5" 4.11)

where k, denotes the initial contact stiffness, 0, is the crack opening displacement, and d,, is
the fatigue damage factor, which represents the stiffness degradation during fatigue cycling.
From &, to Omax, the process represents the transition from initial crack opening to maximum
crack propagation. The integral region corresponds to the maximum strain energy release
rate (SERR) Gpax, which can be expressed as:

G _ Gmax5f _ 6f — Omax ? O-max(éf — &)
max — 2 5f s 2
4.12)
. Omax Sp— (6f - 5max)2

The energy difference during the crack growth process is derived from the relationship

between the maximum SERR and the load ratio R, as follows:

o, S — 2

AG = Gmax — G = —2 5f_M (1_R2), (4.13)
2 6f - 5{)

where R satisfies R? = Gpin /Gmax. Then, the crack propagation rate in the adhesive zone can

be initially estimated using the Paris law, represented as:

da AG\"™

where G, is the total mixed-mode fracture toughness under a specific mode ratio, which
equals (Omax X &8¢)/2 for the bilinear T-S law. Based on Eqs. (4.12) and (4.13), the SERR
and its variation can be obtained through the T-S law. Meanwhile, the relationship between
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crack growth rate and crack length can be trained using the RNN model based on Egs. (4.14)
and (4.15).

The training samples for the NN comprise both experimental and simulation data. Addi-
tionally, fatigue damage evolution rate at the ith cycle, which characterises the progression
of crack growth and the extent of damage in the adhesively bonded zone, is calculated as

follows:

o ad 8a . (dH—l —d,') ) AG i
Dl_ﬁxﬁ_A—aXClx(Gc) s (415)

where d; and d; | represent the damage variable at successive crack lengths, while Aa is the
corresponding crack extension increment. C; and m; are material-specific fatigue parameters,
which obtained from NN fitting. AG is the range of energy release rate during a loading cycle,
and G, is the energy release rate. In summary, the crack propagation solver is developed by
combining DT technology and FM theories and is presented in Algorithm 1.

According to Algorithm 1, preliminary data are stored before entering an iterative loop,
provided that the crack length has not yet reached the defined maximum. After completing k
iterations, the loop terminates, and the resulting quantified uncertainty data are compared
against experimental values stored in the database. If all values fall within the 95% confidence
interval of the experimental results and exhibit a proportional relationship between crack
growth and fatigue cycles, the data are considered valid for use in RUL prediction. Otherwise,
the dataset is discarded, and the simulation—experiment loop continues to generate new data.

4.3.4 Digital twin hybrid model for remaining useful life prognosis

This subsection introduces the RUL prognosis model, composed of multiple NNs. Along
with the damage extent quantification and FCP solver described in Subsection 4.3.2 and
4.3.3, it forms the predictive component of the diagnostic—prognostic framework proposed in
this dissertation.

The model adopts an approximate Bayesian approach for uncertainty quantification and
employs an LSTM network to handle time-series data. A CNN-LSTM architecture integrated
with dropout and MC sampling is implemented. This method leverages the strengths of
DL while addressing the limitations of conventional CNN-based approaches in data-driven
RUL prediction, and avoids the complexity of full BNN modelling. Although dropout is
commonly used to mitigate overfitting in ML, it is also effective for uncertainty estimation.
It helps reduce the model complexity and training cost typically associated with Bayesian

methods, and avoids frequent updates to hidden-layer node parameters.



4.3 Analysis of modules in the diagnosis-prognosis integrated framework 62

Algorithm 1
The algorithm design of fatigue crack propagation solver and data preprocessing.

Input: Initial crack parameters, a = ag, sample number k
// Training NN by simulation and experimental data

I: XFEM and cohesive FEA crack extent — a
2: for j=0tondo
3: extract data d; and dy, 6, from dataset
4: calculating AG by Eqgs. (4.12) and (4.13)
5: Obtaining data <37‘\’,) _then
6: Output C; and m; thréugh Eq. (4.14) & NNs
7: end for
8: while a; < apm.x do
9: fori=0to kdo
10: initial input a = ay, d;, AG;
11: input data to NN
12: calculating Ad;
13: small crack increment Aq; from FEA
14: calculating D; using Eq. (4.15)
15: aiv1 =a;+Aaq;
16: Ni+1 = N;+ AN;
17: i=i+1
18: end for

19: end while
Output: {ai,N,-, (%‘,) .,D,-}
Input-output data // data filtering

Si {Cli,Ni, <3T?,>iaDi}
if S;N (interval confidence) # ( then
write data to the dataset

return step 19

—_—

else
delete data
return initialisation

end if
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The preprocessed input data serve as training data for RUL prediction, satisfying

Eq. (4.16), which defines the mapping between input features and predicted RUL,
Y(X)RUL = WTXGW +b. (4.16)

Performing MC sampling on the result and calculating the covariance, such that:

1 n
Cov(x,y)muc ==~ Y, (W x+b)a(w'y+b), (4.17)
]
where given the input x and w and b parameters for the NN, the covariance can be calculated
by Eq. (4.17). Similarly, when the parameters w and b satisfy the p(w) and p(b) distributions
respectively, the predicted probability distribution can be calculated through the following

equation:

p(Y | X) = / p(w,x,b)p(w) p(b) dwdb, (4.18)

where the w denotes the matrix of w,. The above reasoning explains how a RUL predic-
tion model implements parameter adjustment and probability prediction. Then, similar to
Bayesian uncertainty quantification, variational inference of the posterior distribution is also
required in this context. KL divergence is employed to perform approximate variational
inference. The derivation process for calculating the ELBO is detailed in the literature [115,
122]. The uncertainty in RUL prediction can be quantified as the divergence between the
predicted and actual results, which can be expressed by the following equations:

log p(Y|X) = ELBO ¢(Y |X) +KL[g(Y)[|p(Y|X)]

(4.19)
= /q(w, b)log p(w,x,b)dwdb.
Furthermore, the ELBO term can be formulated as:
N
ELBO q(Y[X)yc = ) log / q(W)p(yulxn, w)dw —KL(g(w)[|p(w)), (4.20)
n=1

where the log p(Y |X) represents statistical constant about the dataset, namely evidence. As
described above, the purpose of the calculation is to optimize KL term, that is, to minimize
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the value of KL. Therefore, the essence is to maximize the ELBO term, such that:

q*(Y) = argminKL[g(Y)||p(Y[X)]log p(Y|X)

4.21)
= argmin {—/q(Y)log pc(l)(]f)()dx .

By integrating the preceding equations, the sampled ELBO can be approximated through

n iterations of MC sampling. The model parameters w and b are represented as multidimen-
sional vectors formed by a linear combination of Gaussian and Bernoulli distributions. Based
on the findings in [115], the modified objective function corresponds to minimising the KL
divergence between the approximate distribution g() and the true posterior p(® | X,Y) in
a deep Gaussian process framework. Consequently, the resulting objective functions are

denoted as Lgropout and the modified form Lyjodified, respectively.

1
N;

=

L
Ldropout: E()ﬁay\l)_’_lZ(”m||%+||bl||%)v (4.22)
i=1

I
—

and

I 1 ¥ log p(yn|xn, @)
Modified < ]v Z - T
n=1
4.23)

L pilz ) 12 )
P2+ —— |

where Lgropour denotes the objective function for the NN with dropout. It comprises a loss
function and a regularization term (L2). N denotes the number of the layer nodes. E(y;, §;)
represents the loss function that measures the difference between the actual output y; and
predicted output §;. A is the weight decay of L2 regularization. T denotes the precision
parameter for the model, which helps in balancing the loss function and regularization term.
[ is the length-scale parameter, which is used to balance the regularization terms in the
objective function. The matrix M; and vector m; represent the variational parameters for layer
number i in the NN.

Fig. 4.9 illustrates the initial parameter settings for DL in the RUL prediction model,
along with the mechanism by which dropout approximately replaces Bayesian estimation.
A preprocessing algorithm is first applied to convert the measured GW signals into input
parameters suitable for the model. These inputs include the crack length in the bonding zone
and the corresponding fatigue cycle count. Some inputs are obtained from simulation, while
others are from experiment. The majority of experimental fatigue lifecycle data for SLJ
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structure is based on research [121, 123]. In the dropout-based approximation, the network
weights are resampled at each forward pass due to the stochastic nature of dropout, resulting
in a different set of active weights each time. The training and testing are conducted with 800
epochs, with a learning rate adjustment step set at 50 starting from epoch 150. In addition to
maximising the log-likelihood, the model incorporates a prior distribution over the weights,
typically assumed to follow a Gaussian distribution. This prior is implemented as the L,
norm of the weights, serving as a regularisation term during training. It plays a critical
role in the initial prediction of damage extent in the bonded region. The total loss function,
comprising the negative log-likelihood and the weight regularisation term, is optimised via

gradient descent, as described in Eq. (4.23).
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Figure 4.9 Flowchart illustrating the initial parameter configuration for RUL prognosis and the
application of dropout to quantify uncertainty.

Conventional DL-based RUL prognosis methods typically produce only point estimates
without providing confidence intervals, which can result in significant economic losses in
practical applications due to prediction errors. To overcome this limitation, Subsection 3.5.2
introduces BNN, which incorporate probabilistic modelling of parameters. By leverag-
ing training samples and variational inference, BNN continuously updates the posterior
distributions of model parameters, thereby enhancing noise robustness and generalisation
performance. Furthermore, the probabilistic output of BNN enables the quantification of
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predictive uncertainty. However, representing weights as probability distributions introduces
additional hyperparameters, complicates the inference process, and significantly increases
the computational cost of both training and prediction. To balance prediction reliability with
computational efficiency, this dissertation adopts dropout as an approximate Bayesian infer-
ence technique. Compared with full BNN, the dropout-based approach achieves uncertainty
quantification with minimal structural modifications and lower computational overhead.

Fig. 4.10 presents the detailed structure of the RUL prognosis model referenced in Fig. 4.1.
The input data is processed following the flowchart shown in Fig. 4.1(d). After data extraction
from the DTHM, normalisation is applied as a preprocessing step. The dataset is then divided
into training, validation, and testing subsets, according to the proportions indicated in
Fig. 4.1(d). This partitioning helps reduce overfitting and enhances the generalisability of the
DL model. It is noteworthy that the volume of experimental data is significantly lower than
that of simulation data (200,000 x 200).

The preprocessing of input data for training the network is a critical step, as illustrated in
Fig. 4.1(d), where the inputs (x) consist of crack length (o) and fatigue cycle count (N). When
dealing with compound labels (namely, damage extent and fatigue cycles), the partitioning
of training data for RUL prediction must be carefully designed.

In the early stages of model development, determining optimal hyperparameter configu-
rations is particularly challenging. The model developed in this dissertation includes three
key parameters: weight (w), bias (b), and learning rate, all of which are influenced by epoch
count, batch size, and dropout probability. Consequently, actual data were not used during
the initial training phase to avoid wasting limited experimental data and compromising model
performance. Although introducing dropout effectively mitigated overfitting, it led to under-
fitting. To enhance model generalisation, experimental data were incrementally incorporated
into the training set. This strategy underpins the 10:1 simulation-to-experiment data ratio
adopted in the training phase, as depicted in Fig. 4.1(d). Similarly, distinct partitioning
strategies are applied to the validation and testing sets to ensure the model generalises well
to previously unseen damage levels and fatigue cycles.

By learning damage patterns ranging from mild to severe and across varying fatigue stages,
the model improves its adaptability to broader scenarios. In the course of ongoing parameter
tuning, the selective inclusion of experimental data has proven effective in enhancing the
reliability of the test outcomes. During the testing stage, prognosis results are evaluated with
dropout enabled in both validation and test phases. This configuration ensures variability
in DL architecture across iterations, yielding multiple RUL estimates. The mean (i) and
variance (Y) of these predictions are then calculated to derive an approximate confidence

interval, thereby quantifying uncertainty.
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4.4 Summary

This chapter introduces in detail the damage diagnosis and RUL prediction framework based
on GW and DT. The DT integrates multiple damage analysis modules, including FCP solvers,
FEA simulations, and experimental data, to simulate failure processes and predict RUL in the
bonded zone of adhesively bonded composite structures. Compared with the traditional BNN,
the proposed CNN-LSTM with dropout method simplifies the network structure without
assigning probability distributions to each layer’s nodes, thus improving prediction accuracy.
Moreover, the RUL predicted using data from the FCP solver and fatigue tests demonstrates
higher accuracy than relying solely on FEA. The next chapter presents the results based on
this model, including experimental validation, simulation outputs, and RUL prognosis.



Chapter 5

Results and discussion

5.1 Introduction

This chapter analyses and discusses the results obtained from the diagnostic—prognostic
framework presented in Chapter 4. The content is structured into three parts. First, the
GW-based approach is applied to evaluate damage extent in the bonding zone of the SLJ
structure, which consists of a CFRP adherend and a two-component epoxy adhesive. Second,
the FCP model is used to generate the damage—fatigue cycle curve and simulate the crack
growth rate. Third, the DTHM model introduced in Section 4.2 is implemented to predict
the RUL and perform uncertainty quantification. Finally, the predicted RUL outcomes
are validated against experimental results and benchmarked against existing models in the
literature, thereby demonstrating the advantages of the proposed method.

5.2 Damage diagnosis based on guided waves

This section presents the results and analysis of damage diagnosis using GWs. In practical
applications, obtaining damage information for bonded composites requires structural data
collected through sensors attached on the structure. Accordingly, PZT sensors attached to
the adherend are used in this study to acquire structural health information from the adhesive
zone. The primary objective of GW-based quantification is to establish a correlation between
the measured GW and the damage extent.

5.2.1 Simulation results of damage detection

A set of simulation experiments was first conducted in COMSOL. This section introduces a

damage detection strategy for a typical CFRP plate structure to preliminarily evaluate the
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sensitivity of different sensor placements to damage. Subsequently, a series of GW signals
under various crack lengths was obtained to qualitatively demonstrate the DI calculation
method used in this study, specifically the signal windowing technique in the time domain.
To better demonstrate the reflection of the damage-related signal during GW propagation,
as well as modal conversion between waveforms, a series of simulations was conducted
using a bar with the same dimensions as the SLJ structure. These simulations confirmed the

feasibility of using the front-end wave packet to assess the damage extent.
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Figure 5.1 The time and frequency signal distribution of a five-cycle tone burst signal centred at 200
kHz.

A 10 mm PZT sensor was employed to excite and record GW signals, aiming to establish
the correlation between crack length and the corresponding scattered signal. Initially, a
simulation was conducted on a single CFRP bar containing a 0.5 mm crack. A five-cycle
tone burst excitation signal centred at 200 kHz, as illustrated in Fig. 5.1, was applied to verify
the effectiveness of GW-based detection, with the results shown in Figs. 5.2 and 5.3.

By comparing the GW signals recorded at three different measurement points, it is
observed that the scattered signals at points 1 and 2 produce similar effects during analysis,
making it difficult to separate damage-related information when both are used simultaneously.
A comparison between points 2 and 3 reveals that the modal conversion and scattering
behaviours observed upon encountering damage are also similar. Therefore, selecting points
2 and 3 as the locations for signal reception is effective for damage assessment. In this
study, PZT sensors are placed on both sides. Consistent with the simplified model, it is
feasible to measure scattered signals corresponding to damage of the adhesive zone using
this configuration. Fig. 5.4 shows the geometric model with two PZTs implemented in the
simulation environment.

The experimentally measured GW signals corresponding to three crack lengths are shown
in Fig. 5.5. A windowing method is applied to capture the useful information from the second
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Figure 5.3 The GW signals obtained at different measurement points for the sample in Fig 5.3.
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Figure 5.4 The geometric model of the SLJ structure with and without damage in COMSOL FEA
simulation environment.

wave packet, and the correlation coefficient between this signal and the reference signal is

calculated to obtain a preliminary DI.
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Figure 5.5 The diagram of the measured GW signals corresponding to different damage extents of
the bonding zone and signal processing method.

Fig. 5.5 presents the results demonstrating the signal windowing approach employed
in this study. The analysis emphasises the extraction of the first two wave packets, which
are rich in damage-related information and primarily reflect the structural integrity of the
bonding zone. By calculating the ToF at various centre frequencies, the initial two damaged
wave packets are isolated. These extracted signals are then subjected to correlation analysis
based on the method defined in Eq. (5.1). The resulting values are fitted to establish the

relationship between DI and crack length (¢¢). This analytical process underpins the research
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findings presented in this dissertation, such that:

_ Cov(GW,,GW,)  _ E[(GW,—E(GW,))(GW4—E(GW,))] 5.1)
/Var(GW,)Var(GWy) /Var(GW,,)Var(GW,) ’ '

where the mathematical operators Cov, E, and Var represent the covariance, mean, and
variance of the signal, respectively. GW;, and GW,; denote the reference GW signal and the

damage-scattered signal (windowed) at the same sensor location.

5.2.2 Experiments on damage detection using guided waves

This subsection first introduces the experimental setup, followed by a description of the
geometric parameters of the specimen. Subsequently, full wavefield scanning of the SLJ
structure was conducted using SLDV. Finally, the GW signals acquired by PZT sensors were
used to compute the DI.

First, the experimental set-up and on-site equipment are shown in Fig. 5.6 and 4.7. PZT
sensors positioned on both sides of the bonding zone are used to excite and measure the GWs.
This experiment focuses on capturing the scattered GW generated by damage within the
bonding zone, computing the DI using the method described in Eq. (5.1), and subsequently
estimating the damage extent.

Subsequently, Fig. 5.7(a) introduces the geometric parameters of the specimen and PZT
positions related to the bonding zone, while Fig. 5.7(b) presents the GW signals measured
under varying damage levels. The three measured signals indicate that, with the propagation
of the crack in the bonding zone, the GW response increasingly exhibits modal conversion
components. In particular, the initial wave packet recorded by the PZT sensor contains
pronounced modal conversions. The presence and progression of damage can be inferred by
analysing the first and second wave packets.

The SLDV experiment was then carried out based on the same specimen described in
Fig. 5.7(a). It should be noted that the SLDV data were not incorporated into the proposed
framework. Instead, they served exclusively as a supplementary tool for visualising the
detailed propagation behaviour of GW through the bonding region. This facilitated a deeper
understanding of the wave propagation phenomena and provided a reference for validating the
numerical model. Fig. 5.8 shows an on-site photograph of the SLDV experiment conducted
on an SLJ structure containing a 20 mm crack, while Fig. 5.9 presents the corresponding full
wavefield distribution captured under a 150 kHz excitation.

The full wavefield scanning results demonstrate that a crack in the bonding area produces

a weak reflected wave detectable via SLDV. Although this reflection resembles boundary-
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Figure 5.6 Diagram of the experimental set-up.

induced reflections in appearance, it possesses significantly lower energy. This observation
further confirms the feasibility of using recorded GW for damage analysis in bonded struc-
tures.

In addition to the GW experiments under varying damage conditions shown in Fig. 5.7(b),
this dissertation also analysed the GW signals recorded at different excitation frequencies.
To further identify the most suitable frequency for assessing damage in the bonding zone, a
series of GW-based experiments was conducted under fixed damage conditions while varying
the excitation frequency. By comparing the responses measured by the PZT across these
frequencies, the optimal range for capturing damage-related features was determined, as
illustrated in Fig. 5.10.

As shown in Fig. 5.10, excitation signals with lower centre frequencies struggle to capture
damage-related characteristics in a specific period. Therefore, higher-frequency signals are
generally preferred for assessing damage in multi-layered structures, despite their increased
susceptibility to noise and dispersion. This is because higher-frequency GWs are more
sensitive to small cracks and provide better signal amplitude within a given time window,
which facilitates clearer signal separation and enhances the measurement resolution.

The measurement locations, excitation frequencies, and measured signals are analysed
in conjunction with the method described in Fig. 5.5. PZT-1 and PZT-2 are selected as



5.2 Damage diagnosis based on guided waves 75

mm F 3

Crack lenght 0*10mm

@
©
2
=0
2925 | PZT_2 g
a4
A First peak, 5-cycles 200 kHz
0 0.5 1 1.5
Time [s] x10°*
Crack lenght 2*10mm
2125 i =+ ¢ ’ Mgodelconversion I
- i
°
2
172.5 |- IPzT_1 B
<
Second peak
132.5 [~ 0 05 1 15
Time [s] %10
P Crack lenght 4*10mm
o Mode conversion
o
=
52.5 |- Irzt o B
=4
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Figure 5.8 SLDV experiment on an SLJ specimen with a 20 mm crack.

350 F

300

o]
5]
=]

Distance [mm)]
[he]
o
o

Space-time spectrum

—
(4]
o

Crack length 20mm
S _ Damage |
= &
& _ I
i ¥
N |
. \\\
-~
0.5 1 1.5 2
Time [s] x104

Figure 5.9 The full wavefield diagram obtained by SLDV for SLJ specimen with 20 mm crack.
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Figure 5.10 Measured GW signal at different frequencies in the adhesive zone with a 40 mm crack
length.

receivers for recording GW. DIs are calculated to quantify the damage extent using high-
frequency excitation signals (over 100 kHz) based on the analysis of Fig. 5.10. The signal
is excited by PZT-0, and the resulting DI values at locations 1 and 2 are used to evaluate
which measurement point is more suitable for quantifying the damage extent. Fig. 5.11
presents the DI for frequencies from 100 to 300 kHz calculated using the method described
in Subsection 5.2.1.

The relationship between crack length and the correlation coefficient becomes more
quantifiable when the excitation frequency is 180 kHz or higher. Different DI values can be
used to estimate crack length based on the DI curve. Fig. 5.11 shows that PZT-2 exhibits
greater sensitivity to damage extent than PZT-1, as its DI shows larger variation and is more
suitable for quantifying crack length. To further examine this correlation, the DI curve
corresponding to the 200 kHz excitation was extracted, as illustrated in Fig. 5.12.

A notable difference is observed when quantifying damage using data from PZT-2, where
the DI calculation exhibits a minor error. Fig. 5.12 further demonstrates that PZT-2 data
provides greater precision than PZT-1 for estimating the extent of damage and offer a more
stable assessment at a specific period.

The experimental results shown in Figs. 5.11 and 5.12 indicate that a single DI curve

cannot be used to quantify all damage levels across all excitation frequencies. However, a
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DI curve corresponding to a specific frequency can approximately represent damage extent
by defining an acceptable error band. In the RUL prediction section, the damage extent
is quantified by using the 200 kHz DI curve, as shown in Fig. 5.12(b). This variation is
more relevant for assessing the extent of damage progression rather than determining an
exact crack length or a specific numerical value of the damage. This dissertation focuses on
using a single-frequency DI curve for damage quantification, rather than covering the full
frequency spectrum. Within a limited error margin, the DI curve still reflects the relationship
between crack length and damage extent. In the SLJ structure with larger cracks, more
signal components are present, including not only damage-related scattering but also various
boundary reflections. As a result, the selection of windowing signal components for DI
calculation may become more complex, leading to larger errors compared to cases with

smaller cracks. The comparative results are presented in Fig. 5.13.
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Figure 5.13 Error bar graph of DI calculated for PZT-1 and PZT-2 at different damage extents.

5.3 Fatigue crack propagation simulation

Crack propagation is modelled using the FCP solver in conjunction with FEA. The FEA
provides the necessary input parameters for the solver, while the FCP model generates the
crack—fatigue curve, enabling the simulation of the nonlinear crack growth process.
High-cycle fatigue behaviour is simulated using the XFEM with an initial crack size of
5 mm and user-defined subroutines. The simulation parameters include a load ratio of 0.1
and a maximum principal stress of 10 kN. The specimen geometry is shown in Fig. 5.7. The
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stress—strain curve and material properties used in the model are presented in Fig. 5.14 and
Tab. 5.1, respectively.

Table 5.1 Material properties of 8552 carbon fiber/epoxy UD laminates and AV 138 two-component
epoxy.

Property 8552 carbon fiber AV138 two-component epoxy

Elastic modulus E (MPa)

En 11380 -

Ex» 320 -

Es3 320 -

E - 4890
Tensile strength (MPa)

Iy - 39.5

ts - 30.2
Poisson’s ratio v

Vi2 0.43 -

Vo3 5.17 -

Vi3 0.43 -

v - 0.35
Shear modulus G

G 3980 -

G 739 -

Gi3 3980 -

G - 1560
Fracture toughness Gic / Gy

Gic - 0.2

Gric - 0.38

The experiment is conducted using 8552-carbon fibre composites as the adherend and
AV 138 adhesive as the bonding material. To reduce the number of fatigue loading cycles and
computation time, a segmented fatigue loading strategy is employed. A static load is initially
applied to accelerate structural degradation, and a non-damage model is adopted as the static
constitutive relationship. Based on the S-S curve presented in Fig. 5.14, fatigue loading is

introduced once the maximum load is reached. At this point, the mechanical behaviour of
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Figure 5.14 Stress-strain curve of SLJ structure.

the integration points in the elements is governed by the fatigue constitutive model. The
corresponding loading strategy for fatigue stress is illustrated in Fig. 5.15.
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Figure 5.15 Fatigue stress loading strategy for SLJ structures.

The fatigue stress propagation in the SLJ structure is shown in Fig. 5.16, presenting
the simulation results under different ultimate fatigue damage cycles (Ny) based on the

user-defined fatigue subroutine.
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Figure 5.16 Simulation results of fatigue stress propagation in SLJ structure.

It can be observed that the damage in the bonding zone gradually extends from the
initial crack location to the bonding boundary and then extends to the middle position. Thus,
employing a method that neglects the adhesive thickness and crack propagation direction
does not accurately reflect the actual crack propagation process. Additionally, the FEA
results reveal that as the crack approaches the EoL, its propagation rate (da/dN) increases
significantly, indicating a typical nonlinear crack growth behaviour. To more intuitively
illustrate this nonlinearity, the corresponding trend is illustrated in Fig. 5.17.

Finally, Fig. 5.18 presents the simulation data obtained using the FCP solver and FEA,
which shows the trend of crack growth in the bonding area as the fatigue cycles progress
(a-Ny). XFEM method does not simplify the information in the bonded zone as CZM,
highlighting the deflection of cracks in the bonded area and thus more accurately representing

the actual crack phenomenon.

5.4 Predicted results with quantified uncertainty

This section analyses the results obtained from the CNN-LSTM architecture with dropout.
The prediction model primarily uses the experimental and simulation data described in
Sections 5.2 and 5.3. The focus is on the RUL of the SLJ structure under fatigue loading,
along with an evaluation of the predicted results and the quantified uncertainty. Addition-
ally, prediction outcomes from several comparative models are presented to highlight the
significance and advantages of the method proposed in this study.

Firstly, a preliminary analysis of fatigue test data and simulation data is conducted, as
shown in Fig. 5.19. Specifically, Fig. 5.19(a) presents the fatigue test results for the SLJ
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structure, which corresponds to the same configuration used in the simulation model. The
experimental data were processed by retaining only the points near the fitted curve, thereby
emphasizing the overall crack growth trend. Fig. 5.19(b) presents the simulation data with
confidence band. To highlight the general trend of the simulation results, a subset of data
points that reflect the progression of crack propagation was selected. It should be noted that

this does not represent the full set of simulation data obtained.
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Figure 5.19 Fatigue damage propagation curves of the bonding zone in the SLJ structure obtained by
experiment (a) and simulation (b).

A nonlinear curve representing crack propagation is obtained by fitting the experimental
and simulation data. The normal probability plots presented in Fig. 5.20 shed light on the
statistical characteristics of the crack length datasets obtained from experiments and simula-
tions. In Fig. 5.20(a), the experimental data show notable deviation from the reference line,
particularly at the lower percentiles (below 15%), suggesting increased scatter in the early
stages of crack growth. This deviation is likely attributed to initial manufacturing defects,
measurement uncertainty, or inconsistencies during data acquisition. The corresponding
statistical parameters (U = 6.83, 0 = 3.28) reinforce this observation, indicating a relatively
wide spread and a higher level of uncertainty in the measured data. Given the limited avail-
ability of experimental data, Gaussian noise is introduced into the experimental data to enrich
the dataset and improve the robustness of the subsequent RUL modelling. The simulated
data in Fig. 5.20(b) demonstrate a stronger alignment with the reference line across most
percentiles, implying that the numerical results follow a near-normal distribution. The mean
value is slightly elevated (u = 7.10), while the standard deviation is reduced (o = 3.10),
suggesting enhanced consistency and a more controlled representation of crack progression
under simulated conditions.
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Figure 5.20 Normal probability of crack length data obtained from experiments (a) and simulations

(b).

The fitting residuals and corresponding percentages, shown in Fig. 5.21(a), are used to
evaluate the quality of the experimental data. Additionally, the normal probability plot assists
in identifying outliers within the dataset. Data points that deviate from the reference line are
regarded as outliers. This helps explain the substantial deviation observed during the initial
stage of RUL prediction, which is likely caused by a high concentration of outliers in both
the experimental and the simulation data sets.

Sub-figs. (b) in Figs. 5.19 to 5.21 present the corresponding statistical parameters for
the simulation data. The distribution results show that the residuals of the preprocessed
data are small, indicating that the overall trend of fatigue crack propagation is similar to the
experiment.

The predictive performance of three different RUL models is compared. The input for all
models consists of labelled damage extent data in the adhesive zone, represented as a—Ny.
The basic parameter settings include an epoch of 150 and a sample size of 200,000x100.
Based on experimental results, an approximate EoL of the SLJ structure is determined and
used as the benchmark for error evaluation. Tab. 5.2 summarises the performance differences
among the three computational models. Accuracy refers to the outcome of single-value RUL
predictions made by a NN without MC sampling. A total of 10,000 individual prediction
runs were performed, and the number of predictions falling within 5% of the true EoL value
was recorded.

Analysis of the computational results indicates that the model proposed in this dissertation
offers notable advantages in terms of accuracy and error control. The CNN-LSTM with

dropout does not require frequent adjustment of node parameters, in contrast to the BNN,
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Figure 5.21 Residual distribution and percentiles of the &-Ny curves obtained from experiments (a)
and simulations (b).

which involves assigning probabilities to each node and regularly tuning model parameters.
As a result, the computation time is also reduced. The results are presented in Fig. 5.22,
where Figs. 5.22(a), (c¢), and (e) show the predictive outcomes of the three different models,
while Figs. 5.22(b), (d), and (f) present the corresponding probability density distributions.
In Fig. 5.22(b), the joint probability density plot demonstrates that the high-density (dark
blue) is concentrated near the EoL range, approximately between 2.5 x 10° to 3.5 x 10°. Tt
is important to note that the density distribution captures all prediction outcomes, including
those with significant deviation, such as predictions near 2.0 x 10°, thus representing the
global uncertainty rather than merely the best-performing outputs. By contrast, the high-
density regions in Figs. 5.22(d) and (f) are exhibiting asymmetry and a wider spread. This
reflects increased variance and reduced predictive precision, suggesting that these models
struggle to produce consistent and accurate RUL predictions across different fatigue stages.
The performance of the CNN model in predicting RUL exhibits relatively large fluctua-
tions compared to CNN-LSTM and BNN, as illustrated in Fig. 5.22(e). These substantial
variations introduce instability in practical applications and complicate uncertainty quantifica-
tion. From the comparative results in Fig. 5.22(a) and (c), it is evident that the CNN-LSTM
model (without sampling) yields a prediction (3.45 x 10°) that is closer to the experimental
EoL (approximately 3.60 x 10%). Simultaneously, from the comparison between Fig. 5.22(b)
and (f), the overall prediction probability of CNN-LSTM with dropout is significantly higher
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Figure 5.22 Prediction of the EoL using different models, (a) value and probability curve of EoL.
calculated using the model proposed in thesis, (c) prediction results after MC sampling calculated
using the BNN model, (e) prediction results after MC sampling calculated using the CNN model, (b),
(d) and (f) represent the probability density of the corresponding data distribution.
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Table 5.2 Comparison of the results of predicting a single numerical EoL using different models.

Index CNN-LSTM with Dropout BNN-MC CNN-MC
Test accuracy (%) 89.52% 73.09% 70.40%
Train accuracy (%) 92.71% 88.70% 80.35%
Test RMSE 3.2 4.0 4.5
Train RMSE 2.8 3.6 3.9
Error uncertainty (%) 10.48% 26.91% 29.60%
Overfitting probability Low Medium High
Input data size 200,000 x 100 200,000 x 100 200,000 x 100
Model complexity Medium High Low

than that of the CNN-MC model alone. Furthermore, Fig. 5.22(a) indicates that the prediction
results of the CNN-LSTM with dropout and MC sampling model exhibit a more uniform
normal distribution, with improved stability compared to the BNN method. However, in
terms of single-value prediction, the BNN performs well (3.63 x 10%), attributed to its more
complex network structure. Nevertheless, its probability density distribution is uneven, which
may lead to polarised prediction results.

Following the results presented in Fig. 5.22, the effectiveness of the CNN-LSTM archi-
tecture with dropout for RUL prediction and uncertainty quantification is discussed. The
data segmentation method illustrated in Fig. 4.1(d) is adopted. Data up to 2.5 x 10° cycles
(displayed in Fig. 5.23 with a 100:1 density) are used as training dataset, while the range
between 2.5 x 10° and 3 x 10 is reserved for testing. Fig. 5.23 shows the EoL prediction
results obtained from two different algorithms. Based on Fig. 5.19(a), the actual service
life of the SLJ structure falls within the range of approximately 3.0 x 10> to 3.6 x 10°. The
conventional BNN approach estimates the fatigue life around 3.3 x 10°, with 73.09% of the
400 prediction runs falling within the actual service life range. However, both RUL,;, and
RUL 1pean deviate significantly from the observed values. In contrast, the method proposed in
Section 4.2 yields a more accurate distribution of RUL predictions. Among 400 calculation
runs, 89.52% of the predicted RUL values fall within the actual service life range. Moreover,
both the average and RULy;, align closely with the experimental observations.

Furthermore, the predicted whisker diagram of the full lifecycle is illustrated in Fig. 5.24.
The trend observed in the whisker plot indicates that prediction error decreases as the fatigue

cycle progresses. However, in the early stages, the prediction error is still relatively large due
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Figure 5.23 Comparative analysis of EoL and RUL prediction results using the BNN model and the
CNN-LSTM with dropout and MC sampling model.

to substantial fluctuations in the input training set. Moreover, there is a significant disparity
between the early and late stages of the simulation data. The damage propagation curve in the
early phase depends on a large number of training data, whereas the later fatigue stages can
be characterised using relatively fewer data. In addition, the lower quality of data filtering
during the initial fatigue cycle also contributes to the unsatisfactory accuracy of early-stage
predictions.

To improve the accuracy of the prediction results, data density is increased during the
initial stage. Before 1.8 x 10° fatigue cycles, the original data density is enhanced by 30%.
The additional data points are generated based on the fitted curve with Gaussian noise
derived from the original simulation and experimental datasets. Furthermore, during input
data preprocessing (prior to normalisation and labelling), 10% of the outliers lying outside
the 95% confidence interval of the fitted curve are removed. The resulting dataset, with
a simulation-to-experimental data ratio of 5:1, forms the updated training dataset. The
corresponding prediction results are presented in Fig. 5.25(a).

The optimised training dataset does not lead to a significant improvement in initial
prediction accuracy. Although the predicted RUL increases by approximately 23.8% at
the onset of crack propagation (0.4 x 10°) in the adhesion region, the RUL predictions
subsequently deviate from the experimental results. This deviation is clearly visible around
a fatigue life of 1.2 x 10° in Fig. 5.25(a). This phenomenon is attributed to the extensive
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application of the dropout method within the model, where a low dropout probability is
set for each hidden layer, resulting in alternating underfitting and overfitting. Moreover,
incorporating a large amount of experimental data during the early stage contributes to
overfitting, which is not unexpected. To address this issue, the input dataset is compressed
by reducing 5% of the experimental data and enabling a portion of the network nodes. The
resulting training outcomes demonstrate reduced overfitting, as indicated by the green curve
(triangle marker with filled colour) in Fig. 5.25(b). In this figure, the original curve represents
predictions without refined input processing, the first optimised dataset corresponds to
Fig. 5.25(a), and the second times optimised dataset (optimised, data) illustrates the revised
input strategy designed to address overfitting.

The comparative results shown in Fig. 5.25(b) demonstrate that the proposed framework
effectively predicts the RUL and EoL, even in the presence of considerable noise within
the training dataset. After optimisation of the training data, the framework also provides
reasonably accurate RUL predictions for early-stage fatigue damage. However, the predicted
values still exhibit slight deviations from the experimental data during the latter fatigue
cycles (beyond 2 x 10°), which can be attributed to the inherent instability of early-stage
RUL predictions. From an industrial perspective, the ability to predict RUL and EoL under
high-cycle fatigue conditions during early-stage damage is both more challenging and more

critical for practical applications.

5.5 Summary

As the final chapter of this thesis, it presents the calculation results of the diagnosis—prognosis
framework. A method for determining DI to assess damage extent is proposed based on
measured GW. In addition, the dataset for the DT model is generated by integrating a user-
defined fatigue subroutine into the FEA and FCP solver, representing the crack propagation
process in the bonding zone of the SLJ structure under fatigue loading.

Initially, crack damage in the bonding zone is quantified using GW. Experimental results
indicate that high-frequency excitation signals characterise damage more sensitively than
low-frequency signals, as lower-frequency wave packets convey less amplitude within the
same time window. Therefore, a five-cycle tone burst signal centred at 200 kHz is applied to
assess damage extent in the bonded zone. PZTs were placed on both sides of the bonding
area, with one functioning as the actuator and the other as the sensor.

Next, the same geometric model is constructed in Abaqus to calculate the S-S and a—-Ny
curves. A material property estimation method based on the S—S curve is adopted to eliminate

the need for extensive experimental testing to determine the mechanical parameters of the
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bonding zone. In addition, XFEM and FM approaches are implemented within the Abaqus
environment to simulate fatigue damage propagation using a user-defined high-cycle fatigue
subroutine. The results demonstrate that XFEM outperforms CZM by providing a more
realistic representation of damage in the bonding area, with the resulting a—Ny curve closely
matching the experimental data, where the EoL is approximately 3.45 x 10°. The CZM
model does not account for crack deflection in the bonding layer, which is modelled with a
simplified viscous constitutive relationship.

Finally, the DTHM is executed to obtain the RUL prediction results. The prognosis
model is based on CNN-LSTM and incorporates the dropout method to approximately
replace BNN for uncertainty quantification. The results indicate that the predicted EoL
from the CNN-LSTM model with dropout and MC sampling are 16.43% higher than BNN.
The resulting probability density function of RUL aligns more closely with the mean EoL
within the 95% confidence interval. This suggests that a greater proportion of prediction
results fall near the true EoL value. However, the use of dropout for BNN approximation
still results in significant error in the early stage, which may be attributed to the size of the
experimental dataset or suboptimal dropout parameter settings. After refining the input by
enabling selected nodes and reducing the experimental data volume, the predicted RUL curve

more closely matches the actual structural lifecycle compared to the unprocessed case.



Chapter 6
Conclusion and future work

The thesis of this dissertation is to propose a diagnostic-prognostic framework based on DT
technology to detect damage and predict RUL for the adhesively bonded composite structure.
To support this thesis, a DTHM is proposed, built upon established SHM techniques using
GW and data-driven RUL prediction models. This framework focuses on the SLJ structure,
utilising GW to quantify damage within the bonded region, and applies three types of DL-
based models—CNN, BNN, and CNN-LSTM with approximate Bayesian inference, for
RUL prediction. Among them, the proposed DTHM enables probabilistic RUL prediction,
uncertainty quantification, and confidence interval estimation, offering a more valuable and
practical reference for lifecycle assessment. The principal research of this dissertation are
summarised as follows:

A method for damage quantification in bonded composite structures is developed by
calculating DI based on measured GW. The approach extracts damage-related features using
windowed GW, correlates them with a reference signal, and establishes a relationship between
DI and crack length.

To overcome the limitations of CZM in simulating crack growth within the bonding
zone, a combined XFEM and FCP solver approach is employed to model nonlinear crack
propagation. It allows simulation of crack deflection in the adhesive region and continuous
fatigue crack growth under high-cycle fatigue.

Given the limitations of conventional DL methods in uncertainty quantification, a BNN
is developed for RUL prediction of SLJ structures. By introducing aleatory and epistemic
uncertainties and applying variational inference, the model outputs a probabilistic distribution
of RUL, enabling confidence interval estimation.

In response to the computational complexity and inefficiency of BNN, a dropout-based
approximate Bayesian inference method is proposed. By combining CNN-LSTM architec-
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ture with MC sampling, the model achieves both high accuracy and efficient uncertainty
quantification in RUL prediction.

Comparative evaluations of classical RUL models highlight the superiority of the pro-
posed CNN-LSTM with dropout approach in uncertainty quantification, accuracy, and
robustness.

The issue of poor accuracy in early-stage RUL prediction is addressed. The shortcomings
of using dropout-based NN to approximately replace BNN are discussed, and prediction
performance is improved through data augmentation and enabling network nodes.

The comparative analysis of numerical and experimental fatigue data validates the effec-
tiveness of the proposed DTHM in damage diagnosis and RUL prediction, demonstrating
clear advantages over conventional models.

In conclusion, the objectives presented in Chapter 1 have been fulfilled, and the thesis of
this dissertation has been proven. The following sections summarise the novel contributions,

key experimental findings, and the future research potential of the methods proposed herein.

6.1 Original contributions of the research

Based on the state-of-the-art review and the outcomes of both numerical and experimental
investigations, several innovative contributions have been identified by the author. These are

summarised as follows:

* A GW-based DI was introduced to quantify the damage extent in the bonding zone,
enhancing the effectiveness of damage detection in complex composite structures.

* A combination of XFEM and FCP solver was proposed to simulate nonlinear crack
propagation. Compared with the conventional CZM, this approach more accurately

replicates the actual crack propagation path.

* A diagnostic—prognostic framework integrating FEA, FM, and ML was developed.
Through DT technology, multi-model fusion was achieved to support comprehensive

damage diagnosis and RUL prediction.

* An approximate Bayesian inference method based on dropout was employed to quantify
uncertainty in RUL prediction. This approach reduces the complexity and training
time associated with BNN.

* A hybrid CNN-LSTM model was implemented for time-series prediction, combined
with multi-layer networks of approximate Bayesian inference to achieve accurate RUL

prediction.
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* A tailored data preprocessing strategy was proposed to improve prediction accuracy
in the early stage. This includes the reduction of outliers in experimental data and
optimisation of the dropout nodes.

6.2 Conclusion

This study employs DT technology to enable damage detection and RUL prediction for SLJ
structures, demonstrating clear advantages over conventional methodologies and contributing

to more efficient SHM. The principal conclusions drawn from the research are as follows:

* The application of GW for damage quantification in the bonding zone demonstrates
that positioning PZT sensors on both sides of the adhesive interface is more effective
in capturing damage-related information than configurations employing a single-sided
or centrally located sensor.

* The lack of correlation between DI and actual damage extent can be mitigated by ex-
tracting multiple wave packets from the measured signal, thereby improving sensitivity

to varying crack lengths.

* XFEM simulations of bonding damage produce different fatigue life results compared
to CZM. For the same structural model and damage configuration, CZM predicts

longer fatigue cycles, likely due to its viscous simplification and mesh dependency.

* The parameters required by the T-S law—namely strain and energy—can be estimated
empirically via S-S curves and the J-integral, thus avoiding the need for extensive

experimental testing.

* For RUL prognosis, the CNN model requires architecture modification to adequately
process time-dependent sequences. Without such improvements, predictions tend to

fluctuate, and uncertainty quantification becomes unreliable.

* In the SLJ damage scenario presented in this dissertation, the CNN-LSTM with
Dropout MC method outperforms the BNN-MC model, yielding 16.43% higher RUL
accuracy, and operates at speeds up to 130% faster, demonstrating greater efficiency

and accuracy.

* Despite its complexity and computational demands, the BNN still achieves the best

point-estimate accuracy among all models evaluated in this study.
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* The initial accuracy of RUL prediction can be enhanced by refining the composition
and quality of the experimental data in the training set and optimising the dropout

probability for selected nodes.

6.3 Future work

The DTHM proposed in this dissertation offers an effective approach for assessing damage
and predicting the RUL of the SLJ structure. The model specifically targets crack propagation
within the bonded zone, with crack length and fatigue cycles serving as the training data and
labelling parameters. The approach has the potential to be extended to other types of bonded
composite materials and failure modes. It is worth mentioning that there could be hundreds
of such combinations, making it impossible to list all types.

Regarding other failure types, crack-based damage detection and quantification using
GWs remains an intuitive and reliable method. Nevertheless, bonded interfaces are also
prone to defects such as adhesive voids and debonding. Developing suitable GW-based
quantification techniques for these damage modes represents an important direction for future
research.

Finally, this study adopts a CNN-LSTM architecture with dropout and compares its
performance with that of single-network models to highlight improvements in prediction
accuracy and uncertainty quantification. However, further comparison with other hybrid
models could enhance the robustness and generalisability of the findings.

In conclusion, there are multiple potential directions for extending this research. Given the
high cost of time and resources, future efforts should prioritise applications with the greatest
practical value rather than attempting to cover all adhesively bonded structures. Moreover,
an emerging area of interest is composite-to-metal bonding, which is increasingly common
in industrial applications. Adapting this framework to such hybrid bonding structures would

represent a valuable and meaningful extension of the current work.
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